Catalytic Reduction of Sulfur in Fluid Catalytic Cracking

Rick Wormsbecher

Collaborators

Grace Davison

Ruizhong Hu Michael Ziebarth Wu-Cheng Cheng Robert H. Harding Xinjin Zhao Terry Roberie Ranjit Kumar Thomas Albro Robert Gatte Laboratoire Catalyse et Spectrochimie, <u>CNRS, Université de Caen</u>

Fabian Can Francoise Maugé Arnaud Travert

Outline

- Review of fluid catalytic cracking.
- Sulfur balance and sulfur cracking chemistry.
- Catalytic reduction of sulfur by Zn aluminate/alumina.

Fluid Catalytic Cracking

- Refinery process that "cracks" high molecular weight hydrocarbons to lower molecular weight.
- Refinery process that provides ~50 % of all transportation fuels indirectly.
- Provides ~35 % of total gasoline pool directly from FCC produced naphtha.
- ~80 % of the sulfur in gasolines comes from the FCC naphtha.

Sulfur in Gasoline

- Sulfur compounds reversibly poison the auto emission catalysts, increasing NOx and hydrocarbon emission. SOx emissions as well.
- World-wide regulations to limit the sulfur content of transportation fuels.

- 10 - 30 ppm gasoline.

- Sulfur can be removed by hydrogenation chemistry.
 - Expensive.
 - Lowers fuel quality.

Fluid Catalytic Cracking Unit

Carbon Distribution

Catalyst Consumption

- 0.25 0.75 #'s/barrel
- About 300,000 tons catalyst/year world wide, for about 300 refiners.
- Consumption depends on feedstock quality, mainly irreversible poisoning by vanadium

FCC Catalysts

- 10 50 % Y type zeolite, usually USY
- 0 13 % Rare earth on zeolite
- 0 80 % active silica/alumina matrix
- 0 50 % binder and kaolin
- Single component or blends
- Additives for olefins, SOx, NOx, CO
- SULFUR REDUCTION TECHNOLOGY

Solid acid catalysis

Zeolite Y structure

Cracking is Catalyzed by Solid Acid/Hydrocarbon Interactions

- Initiation: Hydride abstraction by a Lewis site or carbocation ion formation by a Brønsted site.
- <u>Propagation</u>: Through primarily β -scission.
- Product selectivities governed by stability of product and the precursor carbocation.
- Isomerization, alkylation occur readily

Formation of carbocation transition states

Hydride Transfer (simplified)

High Brønsted site density favors hydride transfer. Catalysts can be tailored with high or low site density.

Feedstocks

- "Average" feed ~ 1.0 wt. % Sulfur
- "Average" feed MW ~ 300 gr/mole
- ~ one in ten feed molecules contain S
- S content ranges from 0 4.5 %

Sulfur Balance in a FCC Unit

Sulfur Species in FCC Gasoline (by GCAED)

Reaction Pathways of Sulfur Species in FCC

Sulfur Species in Feedstock		Sulfur Species in FCC Gasoline
Multi-Ring Aromatic Thiophenes	5→	
Alkylbenzothiophenes	>	
Alkylthiophenes		
Alkyl Sulfides, Mercaptans (Including cyclic sulfides)		
H2S + DiOlefin or Olefin	>	

Reaction Chemistry of S Compounds (Which Feedstock Sulfur Species End Up in Gasoline?)

- Spike a low sulfur (0.3wt% S) base feedstock with model S compounds (0.7% wt% S).
- Look for yield changes in Microactivity Testing
- Compounds tested:

Thiols (octanethiol)

Sulfides (di-n-butylsulfide)

Alkylthiophenes (n-hexylthiophene, n-decylthiophene) Alkylbenzothiophenes (3- and 5-methylbenzothiophene) Alkyldibenzothiophene (1,10-dimethyldibenzothiophene)

Delta Yields of Gasoline Range Sulfur Base Feedstock Spiked with Model S Compounds (0.7% S)

Delta Yields of Gasoline Range Sulfur Base Feedstock (2.8% S) Spiked with Dimethyldibenzothiophene (0.45% S)

Recombination of H₂S and diolefin

DCR Testing: Polysulfide and diolefin addition to a low sulfur feedstock

			(1% S)	Di-Olefin +
	Base	2% Di-Olefin	Polysulfide	Polysulfide
Mercaptans, ppm	5.1	7.3	47.4	30.7
C ₀ -C ₄ Thiophenes, ppm	44.4	50.7	68.0	145.9
BenzoThiophene, ppm	13.3	11.2	11.5	9.9

Reaction Pathways of Sulfur Species in FCC

Sulfur Species in Feedstock		Sulfur Species in FCC Gasoline
Multi-Ring Aromatic Thiophenes	s>	Small amount to benzothiophene
Alkylbenzothiophenes		Benzothiophene by dealkylation Small amount to thiophenols
Alkylthiophenes		Thiophenes by dealkylation Small amount to benzothiophene
Alkyl Sulfides, Mercaptans (Including cyclic sulfides)		Thiophenes by cyclization, aromatization

H2S + DiOlefin

→ Thiophenes

Hydride Transfer Controls Rate of Thiophenic Cracking

A Catalytic Approach

- Zn Aluminate on γ -alumina.
- Solid Lewis Acid.
- Used as an additive (~10 75%) with FCC catalyst.
- Reduces sulfur in gasoline by 20-45% without affecting other yields.
- Most of reduction occurs in light (C3-) thiophenes.

Why Zn?

	$\begin{array}{c} 1 \\ H \\ 1.01 \\ 2 \\ \hline 3 \\ 4 \\ Li \\ 6.94 \\ 9.01 \\ \hline 11 \\ 12 \end{array} \begin{array}{c} 12 \\ Periodic Table \\ of the \\ Elements 2006 \\ \hline 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \hline 11 \\ 12 \end{array}$										18 2 He 4.00 10 Ne 20.18 18							
	Na	Mg	2	4	5	6	7		0	10	11	10	AI	SI	P	S	CI 25.45	Ar
ł	19	24.31	21	22	23	24	25	26	27	28	29	30	31	32	30.97	34	35.45	39.95
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	_77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111							
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	See	"It's Ele	menta	I: The Po	eriodic 80th/el	Table"	html
	(223) (226) (227) (261) (262) (266) (264) (270) (268) (281) (272)																	
					6	29	80 N d	Due	C m2	Eu		TL				The	Vh	
					Ce		NU		SIII	EU	GU		Dy			1000	TD 172.04	LU

Np Pu Am Cm

(244)

(237)

(243)

(247)

Cf

(251)

Bk

(247)

Es

(252)

Fm

(257)

Md

(258)

No

(259)

Lr

(262)

92

U

238.03

90

232.04 231.04

Th

91

Pa

$Zn(AIO_2)_2$ on γ - AI_2O_3

- Nominal 17 % Zn(AlO₂)₂ 83 % γ-Al₂O₃
- ~150 m²/gr surface area
- Nominal monolayer of zinc (10 % Zn) on pseudo-boehmite
- Converted to aluminate at 500 °C
- Both Zn(AlO₂)₂ and γ-Al₂O₃ spinel structures

Lewis Acidity

- $Zn(AIO_2)_2$ and γ -AI₂O₃ have only Lewis acidity.
- $Zn(AIO_2)_2$ increases the Lewis acidity of the γ -AI₂O_{3.}
- Use pyridine DRIFTS for acid type determination.

Probe Lewis and Bronsted Acid Sites by Pyridine-IR analysis

Alumina Lewis acid sites

Zn aluminate/alumina vs. alumina

Simple Additive Approach

(No Optimization of Hydride Transfer & sulfur activity)

REUSY and Zn aluminate/alumina MAT at 525 °C. Feedstock contains 1% S.

REUSY

Std.Conv. Wt%	70	70	
C/O	3.78	3.80	
H2	0.05	0.05	
C1+C2	1.74	1.73	
LPG	16.49	16.21	
C5+Gaso	48.67	48.73	
LCO	20.27	20.39	
640+Btms	9.75	9.60	REUSY $+ 5 \%$ Zn
Coke W% Feed	2.90	3.09	aluminate
mercaptans	0.57	0.15	
thiophene	55.62	40.35	
C1-thiophene	140.22	91.52	
tetrahydrothiophene	31.85	10.91	
C2-thiophene	151.97	102.06	
C3-thiophene + thiophenol	72.91	67.06	
C4-thiophene + C1, C2 thiophenol	55.10	57.09	
benzothiophene	387.61	365.13	
tot w/benzo	895.86	734.28	
ex benzo	508.25	369.15	
%total S conv		18.0	
% ex benzo		27.4	

Working hypothesis

 $\mathbf{k}_1 \longrightarrow$ Hydride Transfer \longrightarrow Catalyst site density

 $\mathbf{k}_3 \longrightarrow$ Zn/Alumina

Fixed Bed Layered Studies

Sulfur Yields vs Zn Aluminate Location

FCC cat w/10% Zn Aluminate Feedstock Contains 1.7% S 300 250 200 sulfur/ppm 150 100 **50** 0 Thiophene C1- Thiophene Tetrahydrothiophene C3- Thiophene + C4- Thiophene + C1, **C2-** Thiophene Thiophenol C2 Thiophenol

FCC

■ Zn Aluminate ABOVE □ Zn Aluminate MIXED

Zn Aluminate BELOW

Experimental : *operando study* at U. of Caen

- Reactors :
 - Classical catalytic reactor
 - IR reactor cell :

Gas outlet : IR, GC and MS Gas analysis

simultaneously : adsorbed species products of a reaction

Summary of pure compound operando studies on Zn/alumina and neat alumina

- No reaction with thiophene.
- Tetrahydrothiophene readily decomposes.
- Evidence that paired Lewis/Brønsted sites are the active sites. More work.

Reaction of tetrahydrothiophene over Zn/alumina at 723 °K

Consumption of THT ;
Formation of 1,3-butadiene.

Work done at U. of Caen

Mass spec analysis during reaction with tetrahydrothiophene

Maximize Sulfur Reduction Approach

(Optimize Hydride Transfer & sulfur activity)

Deactivation of sulfur reduction activity

Deactivation Mechanism

1. Strong Lewis Acid 1625cm⁻¹

2. Weak Lewis Acid 1616cm⁻¹

% light sulfur reduction vs. Strong/ weak Lewis sites ratio

Na and SiO₂ Poisoning of Zn/Al₂O₃

Summary

- Zn aluminate catalyzes the decompositon of saturated sulfur species.
- Maximum sulfur reduction activity is achieved by the optimization of hydride transfer activity of the base FCC catalyst and use of Zn aluminate up to 50 % reduction.
- Currently this technology is in over 40 units world wide and is expected to double in 2006.
- New technology, that does not deactivate, is in commercial trial with excellent performance.