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Chemical Dynamics at Surfaces

= Principle Goal

— To develop an understanding of the detailed mechanisms by
which surface chemical reactions occur in terms of

= Potential Energy Surfaces
= How systems evolve on these surfaces

= Approach

— Measure molecular scattering and sticking with as complete
control and characterization of initial final states

= Angle
= Kinetic Energy

= Rotational, Vibrational, Electronic States
= Alignment and Orientation

— Compare measurements and theory to develop understanding
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Davy — Explosion Proof Lamp

Sig. 192. Davyidie Siderheitslampe
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Early Work on Surface Chemical Reactions

= Davy (1817) = Faraday (1834)
— explosion proof lamp for miners — reacting gasses held on Pt by

— Pt gauze glowed when exposed electrical forces
to gasses from coal mines = Berzelius (1836)

= Ddbereiner(1823) — reacting gasses held on Pt by a

"catalytic force ... not
— Pt gauze glowed on exposure : .
to hydrogen and oxygen independent of the affinities of

_ _ matter, but only a new
— Increased with porosity of manifestation of the same".

gauze — Origin of term catalysis
= "cold fusion" of 1823

= used to make "lighter"
= generally regarded as 1st
example of catalysis = Dumas (1843)

— Quantitative study
= Henry (1824) of adsorption of

— Davy lamp reactions H, on Cu
- 2H,+0,-->H,0
- 2CO+0,-->CO,
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‘ Early Work on Hydrogen Adsorption: |

J.B.A. Dumas, Recherches sur la Composition De L’Eau

Annales de Chemie et de Physiques 111 8 (1843)
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Early Work on Hydrogen Adsorption: Il

= Is there a barrier to adsorption or does Hydrogen
adsorb spontaneously?

® 1843 Melsens Spontaneous adsorption

® 1874 Hampe No adsorption

® 1910 Sieverts No adsorption below 400° C
® 1921 Taylor, Burn No adsorption below 218°C

® 1931 Ward Spontaneous Adsorption
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Lennard Jones Picture of Activated Adsorption

PROCESSES OF ADSORPTION AND DIFFUSION
ON SOLID SURFACES.

By J. E. LEnnarp-Jones (DBristol).

Recewved 4th Fanuary, 1932.

Trans. Faraday Soc. 28, 333 (1932).
(2)

o — Enerj_j

F1e. 3.—The interactic 1 of a molecule and a metal,
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Surface Reactions: Complex Sequence

\reaction
‘ trapping

/nelastic

Initial Interaction
— Direct: bounces back
= Elastic — diffraction
= Inelastic
= Direct (ER) reaction
— Adsorption
= Direct, precursor mediated
= Dissociation, activation barriers W

= Diffusion

= Reaction
— Langmuir-Hinshelwood
— Eley-Rideal

= Desorption
— Activation barriers
— Mirrors initial interaction
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Approach

= Step 1 —work with non-reactive atoms
— Translational energy flow with surface modes

= Step 2 —work with non-reactive molecules
— Rotational modes
— Vibrational modes

= Step 3 —study reactions

D.J. Auerbach © 2006
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Molecule — Surface Interaction Potentials
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Reactive Channels

Potential
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Molecule — Surface Interaction Potentials

| I ]
20 -

Mult: Dimensions!
15 1= " Aspecks of TPotewho! n

10—

Potential

10 =

—-15 |~

2™

-
-

Distance

D.J. Auerbach © 2006

18



Atom —
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Effusive Molecular Beam

= L. Dunoyer, 1911
— First Molecular Beam

v

L. Dunoyer, Le Radium 8, 142 (1911)

D.J. Auerbach © 2006

= Otto Stern, 1919 ...

— 1921 Stern-Gerlach Experiment

— 1943, Noble Prize “for
contribution to the development
of the molecular ray method
and discovery of the magnetic
moment of the proton”

to pump

Fiz 1 Amangement for preducing melecular rays.

O. Stern Z. Phys 7, 249 (1921)
W. Gerlach and O. Stern Z. Phys 8, 110 (1921)
O. Stern Z. Phys 39, 761 (1926)
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Supersonic Molecular Beam

= Cooling via Isentropic Expansion
— Narrow velocity distribution
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Beam Velocity Distributions

> Supersonic
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Seeded Supersonic Beam
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Properties of Molecular Beam Sources

Effusive Beam Supersonic Beam

— Low Pressure, molecular — High pressure hydrodynamic
free flow flow

— Broad velocity distribution — High intensity, narrow

— Temperature of internal velocity spread
states = temperature of — Separate control of
source translation, vibration, and

rotation

Supersonic Beam

Nozzle Gas
Mode Temp Mixture
Translation Yes Yes
Rotation weak weak
Vibration Yes weak

D.J. Auerbach © 2006 25
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Early Molecular Beam Experiments

> Cube Models

Angular Distributions

incident beam

Rudnicki and Wachman Surface Science 34, 679 (1973)
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Surface scattering instrument

LEED AES

= Time-of-flight
distribution P2

. . _1 |

— information on Vol . Y/
velocity after
scattering and - P ]W

residence times Il Crystal

[(At) = f(t, + t, + t3)

v t1: arrival time (known
from initial velocity)

P — 10-14 bar RGA

) ) ]
v 12: residence time

v 13: final velocity j U |__| U ]—
PS5
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Conservation of Parallel Momentum ?

s T A/ LD
9, = 45°
Ef
Conservation
of parallel
ook momentum

Hurst et al., JCP 83,
1376 (1985)

o] 36 60 2 O
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An Unexpected Result: bimodal TOF distributions

Xe / Pt(111)
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= Xe / Pt(111)
— 9 ,=75"; Ts=185 K

= Observe two peaks in the
TOF spectrum of scattered
molecules

= Two scattering channels
— Direct Inelastic
— Trapping - Desorption

Hurst et al. PRL 43, 1175 (1979)
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Stochastic Trajectory Simulations

Generalized Langevin Methods
= Numerically solve classical equations of motion for "primary

zone".

= Energy exchange to rest via friction and random forces

t=1.0 ps

D.J. Auerbach © 2006

References:

v'R. Zwanzig, Ann. Rev. Phys. Chem. 16,
67 (1965)

v" J.D. Doll and D.R. Dion JCP 65, 3762
(1976)

v S.A. Adelman and B.J. Garrison JCP
65, 3751 (1976)

v J.C. Tully, JCP 73, 1975 (1980)

Figure: NO dissociation on Pt(111)

J.C. Tully, Surface Science 299/300,
667 (1994)

31



Relative Number Density Detected

Stochastic Trajectory Results
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Xe / Pt(111)
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Scattering from Liquids

E, = 66 kJ/mol

DP

45°: 45°

Glycerol

Signal

DX + H*(acid) =—DXH*%—~ HX +D*(acid)

0 100 200 300 400 500 600 700
Time of Armival (Usec)

Nathanson et. al. J. Phys. Chem. 100, 13007 (1996)
Klassen and Nathanson, Science 273, 333 (1996)
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Rotational Excitation:
Need for state Resolved Measurements

N, / Pt(111): No sign of new peaks -
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Rotational Excitation
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Seeded supersonic beam of

NO incident on clean Ag(111)

— Few rotational states

Facile rotational excitation
— Direct T=> R transfer

Unexpected peak in
population vs. rotational
state

- “Rotational Rainbow

Kleyn, Luntz, Auerbach, PRL 47 1169 (1981)
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Optical Rainbows
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Simulations of Scattering of NO + Ag(111)

= Analysis: o

— Rotational Rainbow results from A P - "\
. . N -0
strong orientation dependence to Y
energy transfer |

o=z_1

~E =8 kJ/mole

= Prediction:

— There will be a strong orientation
dependence to the trapping
(adsorption) probability

04
| —=o~~ -
E. = 25 ky/mole
~ L
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i %\ i

O D v v e e sl
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J.C. Tully and M.J. Cardillo, Science, 223, 445 (1984)
Muhlhausen, Williams, Tully, J. Chem. Phys. 83, 2594 (1985)
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Orientated Beams /_/
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Molecular adsorption of alkanes on platinum surfaces: A predictive
theoretical model

James A. Stinnett and Robert J. Madix®
Depariment of Chemical Engineering, Stanford University, Stunford, California 94305

(Received 22 January 1996; accepted 18 April 1996)
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Summary — Inelastic Scattering and Trapping

Smooth Potentials

Nearly impulsive scattering \/
Ei

Sufficient energy loss >

trapping IR ZA VA VAVAVAVA
— Phonons, rotation important wevO O O O O |
— Vibration, eh pairs usually small O O O OO
O O O OO

Scattering divides into two
channels:

— Direct inelastic

— Trapping possibly followed by
desorption

Predictive theory is available
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End of part 1a
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Adsorption and Reactions

Can we find more direct evidence to support
reaction paradigms ?

— Precursor mediated dissociative adsorption

— Direct “Eley-Rideal” reactions

Can we overcome activations barriers to
dissociative adsorption ?

— Kinetic Energy

— Vibrational Energy

D.J. Auerbach © 2006
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‘ Adsorption Mechanisms and Adsorption Probability
vs. Coverage

Non Dissociative Dissociative Precursor Mediated
Adsorption Adsorption Adsorption
'I z o0 PYYY II w ii‘ 'R XA
90 oo .o.o;'ooo.'o 0os 00020
0000 XYY IYIYXILYT) 9§00 o0 veope
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Molecular Beam Instrument for Adsorption Studies

gas
line pumps pumps

-

)
- -,

capillary

| I
10 cm

getters

beam
stoppers

decker
valves

adsorbent

stannous oxide
film

beam diffuser

Ficure 5. The molecular beam apparatus, constructed in Pyrex glass.

D.A. King and M.G. Wells

Proc R. Soc. Lond. A. 339, 245-269 (1974)
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Measurements of Adsorption Probabillity

N2 / W(100)

sticking probability, #

nitrogen coverage/10" atorms em-?

D.A. King and M.G. Wells
Proc R. Soc. Lond. A. 339,
245-269 (1974)
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‘ Results and Kinetic Model

06

7 - . ma sl
4 /
/

/ / /
,p" - ,..- - / - /
— — — # —_— %}’:_ — __phymorbed

04 species

sticking probahbility, #

!\

/ N\
’f \\ J F3 \\
—_— #_ _‘L _i_ = === Chemisorbed

distance across surfuce species

nitrogen coverage/10" atoms em-*

= As surface temperature is increased Adsorption probability
decreases.

— Effect arises from competition between migration and desorption
— Higher temperatures - desorption wins

= Predictions

— At high T4 molecules desorb after trapping before they can chemisorb.

Therefore the observed trapping fraction should increase

— Raising the kinetic energy should decrease trapping = adsorption
probability should decrease

D.J. Auerbach © 2006
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Direct Inelastic and Trapping Components

Relative Intensity
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Rettner et al. PRL 61, 986(1988)
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Effect of E; (precursor mediated adsorption)

Decrease in adsorption probability with kinetic energy provides
direct dynamical evidence for precursor states

Unexpected increase at higher energy - direct mechanism

| | | 1 |

1.0 |- -
N, /W(100)

04

Initial Sticking Probability

0.2

0.0 0.4 0.8 1.2 1.6

Rettner et al., JCP 89, 3336 (1988) Kinetic Energy (eV)
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Adsorption and Reactions

Can we find more direct evidence to support
reaction paradigms ?
— Precursor mediated dissociative adsorption

—> — Direct “Eley-Rideal” reactions

Can we overcome activation barriers to
dissociative adsorption ?

— Kinetic Energy

— Vibrational Energy

D.J. Auerbach © 2006
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Dynamical Evidence for ER reactions

For Langmuir-
Hinshelwood reactions,
reactants first equilibrate
with the surface.

— Therefore the product
retains no “memory” of
the incidence conditions

Hallmark of a direct
Process
— the product momentum

retains “memory” of the
Incidence momentum

H+Cl/Au(111)>HCI
TS= 100 K E|=037 eV
E=0.07 eV

/

C.T. Rettner and D.J. Auerbach Science 263(5145), p. 365-367, 1994

D.J. Auerbach © 2006
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Adsorption and Reactions

Can we find more direct evidence to support
reaction paradigms ?

— Precursor mediated dissociative adsorption

— Direct “Eley-Rideal” reactions

Can we overcome activation barriers to
dissociative adsorption ?

—> — Kinetic Energy
— Vibrational Energy

D.J. Auerbach © 2006
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Activated Adsorption: N, + W(110)

¥ . M+ A-IE

M4 AR

Dissociative adsorption
probability shows a dramatic
Increase with E;

Results do not scale with
normal momentum

— one dimensional picture is not
adequate

D.J. Auerbach © 2006

N, Beam energy(kcal /gmol)
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Lee, Madix, Schlaegel, Auerbach
Surface Science 143, 626 (1984)
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Activated Adsorption: CH, + W(110)

= EXxponential increase in
adsorption probability
— Not an S shaped curve

= Large isotope

= Results suggest tunneling
mechanism

C.T. Rettner, H.E. Pfnur, and D.J. Auerbach,

Physical Review Letters 54, 2716, 1985.

D.J. Auerbach © 2006
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Activated Adsorption: Examples

D.J. Auerbach © 2006
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Adsorption and Reactions

Can we find more direct evidence to support
reaction paradigms ?

— Precursor mediated dissociative adsorption

— Direct “Eley-Rideal” reactions

Can we overcome activation barriers to
dissociative adsorption ?
— Kinetic Energy

—> — \/ibrational Energy

D.J. Auerbach © 2006
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Method

Measure adsorption probability at low nozzle temperature
— Low vibrational temperature
— Vary energy by seeding technique - change gas mixture

Repeat measurement at high nozzle temperature
— High vibrational temperature

Compare results and same kinetic energy

D.J. Auerbach © 2006
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“Vibrational Efficacy”
CH, /W(110) N, / Fe(111)
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Summary — Adsorption Probabilities

Molecular beam methods provide direct dynamical evidence for
Important paradigms

— precursor mediated adsorption

— Direct Eley-Rideal reactions

— Activated adsorption

Many surprising and unexpected results

Both translational and vibrational energy are effective in
overcoming activation barriers

Heated beam technique is not adequate to address the role of
vibrational motion

— Not mode specific

— Available energy it too limited
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End of Part 1b
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- M+ A+

M+ AR
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F1G. 9. Initial sticking probability of N, on W (110) as a function of inci-
dence kinetic energy for normal incidence. The dashed curve represents a
Gaussian barrier height distnibution corresponding to the relative probabil-
ity of a molecule dissociating at a given incidence energy. This has been
fitted to the sticking probability data with the Gaussian shape imposed as a
constraint to the fit, as described in the gext.
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Dissociative Chemisorption of CHy on W({110): Dramatic Activation
by Initial Kinetic Energy

C. T. Rettner, H. E. Pfniir,"’ and D. J. Auerbach
[BM Research Laboratory, San Jose, California 95193
(Received 2% October 1984)

The initial dissociative chemisorption probability of CH, on a WOLI0D surface is found to increase
by ~— 10 on raising of the CH, incident translational energy, reaching a value of — 0.2 at 100
kl/mele. This is by far the largest such effect (by — 100 ) reporied to date and is consistent with a
mechamsm dominated by quantum tunneling, a conclusion further supported by measuremenis for
L

PACS nurnbers: 8165 Jv, 35 0000Gs, 79 200R1, 8265 My

Methan el (1 100

Irstial Sicking Probahilisy

E, = Ecos?s (hdmal 1)

FIG. 1. Imitial sticking probability for CHy (salid syrmbolz)
and CDy (open symbols) on W{110} as o function of beam
cnergy at various angkes of incidence. The surface tempera-
ture for these measurements was 800 K. The solk and
dushed lines correspond to the predictions of 8 model based
on tunneling throwgh @ one-dimensional parabolic barrier
(zee text).
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Surface Science 130 (1983) 395-409 304
Morth-Holland Publishing Company

DIRECT-INELASTIC AND TRAPPING-DESORPTION SCATTERING OF
N, AND CH, FROM Pt{111)

Kenneth C, JANDA @

Nopes Laborarory of Chemical Phystes, Califoriia Ingrinie of Technology®, Pasadena, Califormia
Off2s, USA

Jerry E. HURST ¢, James COWIN 9 and Lennard WHARTON ©
James Franck Institure, University of Chicago, Chicage, Hllinois 60637, L/SA

and

Daniel J. AUERBACH
FBM Research Laboratories, San Jese, Califormia 95183, US4

Received 14 December 1982: accented for nublication 15 Anril 1983
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Explosion Proof Lamps

T
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Early Work on Hydrogen Adsorption: Il

= Is there a barrier to adsorption or does Hydrogen
adsorb spontaneously?

® 1843 Melsens Spontaneous adsorption

® 1874 Hampe No adsorption

® 1910 Sieverts No adsorption below 400° C
® 1921 Taylor, Burn No adsorption below 218°C
® 1931 Ward Spontaneous Adsorption

® 1935 Beebeetal. Spontaneous Adsorption

® 1948 Rienaecker, Sarry E_,~0.5eV
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Kinetic Model
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(i1} Vibrational excitation of NH, on Au(111)
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Fig. 4. Effect of kinetic energy on the vibrational excitation probability of NH; in collisions
with a Au(111) surface (ref. 9). The energies of the various », quanta are indicated by the
arrows (10 kecal/mole=0.433 eV).
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