Molecular Beam Scattering as a Probe of Surface Chemical Dynamics: part 1

D. J. Auerbach Hitachi Global Storage Technologies San Jose, CA

PIRE-ECCI Summer School Santa Barbara California August 21, 2006

Chemical Dynamics at Surfaces

Principle Goal

- To develop an understanding of the detailed mechanisms by which surface chemical reactions occur in terms of
 - Potential Energy Surfaces
 - How systems evolve on these surfaces

Approach

- Measure molecular scattering and sticking with as complete control and characterization of initial final states
 - Angle
 - Kinetic Energy
 - Rotational, Vibrational, Electronic States
 - Alignment and Orientation

- Compare measurements and theory to develop understanding

Outline

- **1.** Early history
- 2. The Revolution of the 1920s and 30s
 - ✓ Development of Key Paradigms
- 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
- 4. Advent of laser based methods for quantum state-specific beam preparation and measurements
 - ✓ Methods and examples: state resolved measurements

5. Case Studies

- Activated Adsorption of Hydrogen on Cu
- Nonadiabatic effects in interactions on metal surfaces

Davy – Explosion Proof Lamp

Early Work on Surface Chemical Reactions

- Davy (1817)
 - explosion proof lamp for miners
 - Pt gauze glowed when exposed to gasses from coal mines

Döbereiner(1823)

- Pt gauze glowed on exposure to hydrogen and oxygen
- Increased with porosity of gauze
 - "cold fusion" of 1823
 - used to make "lighter"
 - generally regarded as 1st example of catalysis
- Henry (1824)
 - Davy lamp reactions
 - $2 H_2 + O_2 H_2O$
 - $-2 \text{ CO} + \text{O}_2 \text{>} \text{CO}_2$

- Faraday (1834)
 - reacting gasses held on Pt by electrical forces
- Berzelius (1836)
 - reacting gasses held on Pt by a "catalytic force ... not independent of the affinities of matter, but only a new manifestation of the same".
 - Origin of term catalysis
- Dumas (1843)
 - Quantitative study of adsorption of H_2 on Cu

FIG. 85.-J. B. A. DUMAS, 1800-1884

Early Work on Hydrogen Adsorption: I

J.B.A. Dumas, Recherches sur la Composition De L'Eau Annales de Chemie et de Physiques 111 8 (1843)

Early Work on Hydrogen Adsorption: II

Is there a barrier to adsorption or does Hydrogen adsorb spontaneously?

• 1843	Melsens	Spontaneous adsorption
• 1874	Hampe	No adsorption
• 1910	Sieverts	No adsorption below 400° C
• 1921	Taylor, Burn	No adsorption below 218° C
• 1931	Ward	Spontaneous Adsorption

Outline

- 1. Early history
- The Revolution of the 1920s and 30s
 Development of Key Paradigms
 - 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
 - 4. Laser based methods for quantum state-specific beam preparation and measurements
 - ✓ Methods and examples: state resolved measurements
 - 5. Case Studies
 - Activated Adsorption of Hydrogen on Cu
 - ✓ Nonadiabatic effects in interactions on metal surfaces

Lennard Jones Picture of Activated Adsorption

PROCESSES OF ADSORPTION AND DIFFUSION ON SOLID SURFACES.

BY J. E. LENNARD. JONES (Bristol).

Received 4th January, 1932.

FIG. 3 .- The interactic 1 of a molecule and a metal.

2) 10 Irving Langmuir LANGMUIR ADSORPTION Adsorption on lattice sites Blocks Further Adsorption Direct Adsorption (1-0) S Θ $(1-0)^2$ Dissociation PRECURSOR MEDIATED ADSORPTION (1929) · Cs/W and O2/W · Evidence from Sticking Probabilities vs. Coverage Precursor S Ð

Langmuir

Irving Langmuir looked into blackened light bulbs and created modern surface chemistry.

Irving Langmuir looked into blackened light bulbs and created modern surface chemistry.

Outline

- 1. Early history
- 2. The Revolution of the 1920s and 30s
 - ✓ Development of Key Paradigms
- 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
- 4. Laser based methods for quantum state-specific beam preparation and measurements
 - ✓ Methods and examples: state resolved measurements
- 5. Case Studies
 - ✓ Activated Adsorption of Hydrogen on Cu
 - ✓ Nonadiabatic effects in interactions on metal surfaces

Surface Reactions: Complex Sequence

Initial Interaction

- Direct: bounces back
 - Elastic diffraction
 - Inelastic
 - Direct (ER) reaction
- Adsorption
 - Direct, precursor mediated
 - Dissociation, activation barriers
- Diffusion
- Reaction
 - Langmuir-Hinshelwood
 - Eley-Rideal
- Desorption
 - Activation barriers
 - Mirrors initial interaction

Approach

Step 1 – work with non-reactive atoms

- Translational energy flow with surface modes

Step 2 – work with non-reactive molecules

- Rotational modes
- Vibrational modes

Step 3 – study reactions

Atom – Surface Interaction Potential

Molecule – Surface Interaction Potentials

Reactive Channels

Molecule – Surface Interaction Potentials

Atom – Surface Interaction Potential

Outline

- 1. Early history
- 2. The Revolution of the 1920s and 30s
 - Development of Key Paradigms
- 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
 - Molecular Beams
 - Inelastic Scattering and Trapping
- 4. Laser based methods for quantum state-specific beam preparation and measurements
 - Methods and examples: state resolved measurements
- 5. Case Studies
 - Activated Adsorption of Hydrogen on Cu
 - ✓ Nonadiabatic effects in interactions on metal surfaces

Effusive Molecular Beam

- L. Dunoyer, 1911
 - First Molecular Beam

L. Dunoyer, Le Radium 8, 142 (1911)

- Otto Stern, 1919 …
 - 1921 Stern-Gerlach Experiment
 - 1943, Noble Prize "for contribution to the development of the molecular ray method and discovery of the magnetic moment of the proton"

Fig. 1. Arrangement for producing molecular rays.

O. Stern *Z. Phys* 7, 249 (1921)
W. Gerlach and O. Stern *Z. Phys* 8, 110 (1921)
O. Stern *Z. Phys* 39, 761 (1926)

Supersonic Molecular Beam

Cooling via Isentropic Expansion

- Narrow velocity distribution

Beam Velocity Distributions

M: Mach Number

Seeded Supersonic Beam

Properties of Molecular Beam Sources

Effusive Beam

- Low Pressure, molecular free flow
- Broad velocity distribution
- Temperature of internal states = temperature of source

Supersonic Beam

- High pressure hydrodynamic flow
- High intensity, narrow velocity spread
- Separate control of translation, vibration, and rotation

Supersonic Beam

Mode	Nozzle Temp	Gas Mixture
Translation	Yes	Yes
Rotation	weak	weak
Vibration	Yes	weak

Outline

- 1. Early history
- 2. The Revolution of the 1920s and 30s
 - Development of Key Paradigms
- 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
 - Molecular Beams
 - Step 1: Inelastic Scattering and Trapping Atoms
 - Step 2: Inelastic Scattering and Trapping -- Molecules
 - Step 3: Adsorption and Reaction
- 4. Laser based methods for quantum state-specific beam preparation and measurements
 - Methods and examples: state resolved measurements
- 5. Case Studies
 - ✓ Activated Adsorption of Hydrogen on Cu
 - Nonadiabatic effects in interactions on metal surfaces

Early Molecular Beam Experiments

Cube Models Angular Distributions

Rudnicki and Wachman Surface Science 34, 679 (1973)

"Law of Parallel Momentum Conservation"

°⊆fn

<u>Cft=Cit</u>

potential

well, W

Ωc

Surface scattering instrument

- Time-of-flight distribution
 - information on velocity after scattering and residence times
- $I(\Delta t) = f(t_1 + t_2 + t_3)$
- t1: arrival time (known from initial velocity)
- ✓ t2: residence time
- ✓ t3: final velocity

Conservation of Parallel Momentum ?

Stochastic Trajectory Simulations

Generalized Langevin Methods

- Numerically solve classical equations of motion for "*primary* zone".
- Energy exchange to rest via *friction and random forces*

References:

- ✓ R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965)
- ✓ J.D. Doll and D.R. Dion JCP 65, 3762 (1976)
- S.A. Adelman and B.J. Garrison JCP 65, 3751 (1976)
- ✓ J.C. Tully, JCP **73**, 1975 (1980)

Figure: NO dissociation on Pt(111) J.C. Tully, Surface Science **299/300**, 667 (1994)

D.J. Auerbach © 2006

Scattering from Liquids

Nathanson et. al. *J. Phys. Chem.* **100**, 13007 (1996) Klassen and Nathanson, Science **273**, 333 (1996)

Outline

- 1. Early history
- 2. The Revolution of the 1920s and 30s
 - Development of Key Paradigms
- 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
 - Molecular Beams
 - Step 1: Inelastic Scattering and Trapping Atoms
 - Step 2: Inelastic Scattering and Trapping -- Molecules
 - Step 3: Adsorption and Reaction
- 4. Laser based methods for quantum state-specific beam preparation and measurements
 - ✓ Methods and examples: state resolved measurements
- 5. Case Studies
 - ✓ Activated Adsorption of Hydrogen on Cu
 - Nonadiabatic effects in interactions on metal surfaces

Rotational Excitation

 Seeded supersonic beam of NO incident on clean Ag(111)

- Few rotational states

Facile rotational excitation

- Direct T \rightarrow R transfer
- Unexpected peak in population vs. rotational state

→ "Rotational Rainbow

Kleyn, Luntz, Auerbach, PRL 47 1169 (1981)

Optical Rainbows

Simulations of Scattering of NO + Ag(111)

- Analysis:
 - Rotational Rainbow results from strong orientation dependence to energy transfer

Prediction:

 There will be a strong orientation dependence to the trapping (adsorption) probability

J.C. Tully and M.J. Cardillo, *Science*, **223**, 445 (1984) Muhlhausen, Williams, Tully, *J. Chem. Phys.* **83**, 2594 (1985)

Molecular adsorption of alkanes on platinum surfaces: A predictive theoretical model

James A. Stinnett and Robert J. Madixa)

Department of Chemical Engineering, Stanford University, Stanford, California 94305

(Received 22 January 1996; accepted 18 April 1996)

D.J. Auerbach © 2006

Summary – Inelastic Scattering and Trapping

- Smooth Potentials
- Nearly impulsive scattering
- Sufficient energy loss → trapping
 - Phonons, rotation important
 - Vibration, eh pairs usually small
- Scattering divides into two channels:
 - Direct inelastic
 - Trapping possibly followed by desorption

Predictive theory is available

End of part 1a

Outline

- 1. Early history
- 2. The Revolution of the 1920s and 30s
 - Development of Key Paradigms
- 3. Advent of Molecular Beams, UHV Surface Science, and Power Computers
 - ✓ Approach to unraveling the complex sequence of events
 - ✓ Methods and examples: momentum resolved measurements
 - Molecular Beams
 - Step 1: Inelastic Scattering and Trapping Atoms
 - Step 2: Inelastic Scattering and Trapping -- Molecules
 - Step 3: Adsorption and Reaction
- 4. Laser based methods for quantum state-specific beam preparation and measurements
 - Methods and examples: state resolved measurements
- 5. Case Studies
 - ✓ Activated Adsorption of Hydrogen on Cu
 - Nonadiabatic effects in interactions on metal surfaces

Adsorption and Reactions

- Can we find more direct evidence to support reaction paradigms ?
 - Precursor mediated dissociative adsorption
 - Direct "Eley-Rideal" reactions

Can we overcome activations barriers to dissociative adsorption ?

- Kinetic Energy
- Vibrational Energy

Adsorption Mechanisms and Adsorption Probability vs. Coverage

D.J. Auerbach © 2006

Molecular Beam Instrument for Adsorption Studies

FIGURE 5. The molecular beam apparatus, constructed in Pyrex glass.

D.A. King and M.G. Wells Proc R. Soc. Lond. A. **339**, 245-269 (1974)

Measurements of Adsorption Probability

D.A. King and M.G. Wells Proc R. Soc. Lond. A. **339**, 245-269 (1974)

Results and Kinetic Model

- As surface temperature is increased Adsorption probability decreases.
 - Effect arises from competition between migration and desorption
 - Higher temperatures \rightarrow desorption wins

Predictions

- At high T_s molecules desorb after trapping before they can chemisorb.
 Therefore the **observed trapping fraction should increase**
- Raising the kinetic energy should decrease trapping → adsorption probability should decrease

Direct Inelastic and Trapping Components

Rettner et al. PRL 61, 986(1988)

D.J. Auerbach © 2006

Effect of E_i (precursor mediated adsorption)

- Decrease in adsorption probability with kinetic energy provides direct dynamical evidence for precursor states
- Unexpected increase at higher energy \rightarrow direct mechanism

Adsorption and Reactions

Can we find more direct evidence to support reaction paradigms ?

- Precursor mediated dissociative adsorption
- Direct "Eley-Rideal" reactions

Can we overcome activation barriers to dissociative adsorption ?

- Kinetic Energy
- Vibrational Energy

Dynamical Evidence for ER reactions

- For Langmuir-Hinshelwood reactions, reactants first equilibrate with the surface.
 - Therefore the product retains no "memory" of the incidence conditions
- Hallmark of a direct process
 - the product momentum retains "memory" of the incidence momentum

C.T. Rettner and D.J. Auerbach Science 263(5145), p. 365-367, 1994

Adsorption and Reactions

Can we find more direct evidence to support reaction paradigms ?

- Precursor mediated dissociative adsorption
- Direct "Eley-Rideal" reactions

Can we overcome activation barriers to dissociative adsorption ?

- Kinetic Energy
 - Vibrational Energy

Activated Adsorption: $N_2 + W(110)$

- Dissociative adsorption probability shows a dramatic increase with E_i
- Results do not scale with normal momentum
 - one dimensional picture is not adequate

Lee, Madix, Schlaegel, Auerbach Surface Science **143**, 626 (1984)

Activated Adsorption: $CH_4 + W(110)$

- Exponential increase in adsorption probability
 - Not an S shaped curve
- Large isotope
- Results suggest tunneling mechanism

Activated Adsorption: Examples

Adsorption and Reactions

Can we find more direct evidence to support reaction paradigms ?

- Precursor mediated dissociative adsorption
- Direct "Eley-Rideal" reactions

Can we overcome activation barriers to dissociative adsorption ?

- Kinetic Energy
- Vibrational Energy

Method

Measure adsorption probability at low nozzle temperature

- Low vibrational temperature
- Vary energy by seeding technique \rightarrow change gas mixture

Repeat measurement at high nozzle temperature

- High vibrational temperature

Compare results and same kinetic energy

C.T. Rettner et al. PRL 54, 2716, 1985; JCP 83 4163 (1986);

Summary – Adsorption Probabilities

- Molecular beam methods provide direct dynamical evidence for important paradigms
 - precursor mediated adsorption
 - Direct Eley-Rideal reactions
 - Activated adsorption
- Many surprising and unexpected results
- Both translational and vibrational energy are effective in overcoming activation barriers
- Heated beam technique is not adequate to address the role of vibrational motion
 - Not mode specific
 - Available energy it too limited

End of Part 1b

Extra Slides

FIG. 9. Initial sticking probability of N_2 on W(110) as a function of incidence kinetic energy for normal incidence. The dashed curve represents a Gaussian barrier height distribution corresponding to the relative probability of a molecule dissociating at a given incidence energy. This has been fitted to the sticking probability data with the Gaussian shape imposed as a constraint to the fit, as described in the text.

Dissociative Chemisorption of CH₄ on W(110): Dramatic Activation by Initial Kinetic Energy

C. T. Rettner, H. E. Pfnür, ^(a) and D. J. Auerbach *IBM Research Laboratory, San Jose, California 95193* (Received 29 October 1984)

The initial dissociative chemisorption probability of CH₄ on a W(110) surface is found to increase by $\sim 10^5$ on raising of the CH₄ incident translational energy, reaching a value of ~ 0.2 at 100 kJ/mole. This is by far the largest such effect (by $\sim 10^3$) reported to date and is consistent with a mechanism dominated by quantum tunneling, a conclusion further supported by measurements for CD₄.

PACS numbers: 82.65.Jv, 35.20.Gs, 79.20.Rf, 82.65.My

FIG. 1. Initial sticking probability for CH₄ (solid symbols) and CD₄ (open symbols) on W(110) as a function of beam energy at various angles of incidence. The surface temperature for these measurements was 800 K. The solid and dashed lines correspond to the predictions of a model based on tunneling through a one-dimensional parabolic barrier (see text).

Surface Science 130 (1983) 395-409 North-Holland Publishing Company

DIRECT-INELASTIC AND TRAPPING-DESORPTION SCATTERING OF N₂ AND CH₄ FROM Pt(111)

Kenneth C. JANDA ^a

Noyes Laboratory of Chemical Physics, California Institute of Technology^b, Pasadena, California 91125, USA

Jerry E. HURST ^c, James COWIN ^d and Lennard WHARTON ^e

James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA

and

Daniel J. AUERBACH IBM Research Laboratories, San Jose, California 95183, USA

Received 14 December 1982: accepted for publication 15 April 1983

395

D.J. Auerbach © 2006

69

Explosion Proof Lamps

Early Work on Hydrogen Adsorption: II

Is there a barrier to adsorption or does Hydrogen adsorb spontaneously?

• 1843	Melsens	Spontaneous adsorption
• 1874	Hampe	No adsorption
• 1910	Sieverts	No adsorption below 400° C
• 1921	Taylor, Burn	No adsorption below 218° C
• 1931	Ward	Spontaneous Adsorption
• 1935	Beebe et al.	Spontaneous Adsorption
• 1948	Rienaecker, Sarry	E _a ~ 0.5 eV
Kinetic Model

(ii) Vibrational excitation of NH3 on Au(111)

Fig. 4. Effect of kinetic energy on the vibrational excitation probability of NH₃ in collisions with a Au(111) surface (ref. 9). The energies of the various r_2 quanta are indicated by the arrows (10 kcal/mole=0.433 eV).