Summer School on Surface Science & Catalysis August 13-25, UCSB/USA

Introduction of the Dalian Institute of Chemical Physics (DICP), CAS

Xinhe BAO

Dalian Institute of Chemical Physics, DICP the Chinese Academy of Sciences, CAS

> *Tel:* 0411 84686637, <u>xhbao@dicp.ac.cn</u> http://www.fruit.dicp.ac.cn

Contents

Introductions

the Dalian Institute of Chemical Physics (DICP)
 the State Key Laboratory of Catalysis (SKLC)
 Nano-Catalysis

- Nano-film: Quantum well states
- > Nano-Particle: Quantum size effects
- > Nano-pore: Confinement effects

中国科学院大连化学物理研究所 Dalian Institute of Chemical Physics, CAS

About the Chinese Academy of Sciences

STRUCTURE:

- Merit-based Academic Divisions: Members: 700 inc. 35 Foreign Members
- Comprehensive National Research Institution:
 90 Institutes,
 1 University
 1 Postgraduate School

Total Staff : 50,000

MISSIONS:

- Scientific Research
- High Technology Development
- Education and Training
- Think Tank of Science Policies

中国科学院大连化学物理研究所 Dalian Institute of Chemical Physics, CAS

Dimensions of Dalian Institute

Research Organizations of DICP

Basic

Research

Laboratory of Fuel Cell

Laboratory of Chemical Lasers

Laboratory of Materials

Spin-off Companies

Pesticide Intermediates Membrane Technology Chromatographer Fuel Cell Catalyst

Fundamental Researches at DICP

Fundamental Researches in DICP

Nature (2002) Science (2003)

Science, March 2006

Applied Researches in DICP

 Sustainable Energy
 Resources Optimal Utilization
 Bio-Technologies

Energy Researches in DICP

Optimal Utilization of Natural Gas

- Production of Syngas via Low-cost Process
- Syngas Chemistry including FT and Oxygenate Synthesis
- Direct conversion of Methane

Hydrogen Energy

- Hydrogen Production from Natural Gas, Lower Alkanes and Resid as well as Methanol
- Hydrogen Production via Bio-technology
- Separation of Hydrogen from Carbon Monoxide and

Carbon Dioxide by membranes

Fuel Cell

- Proton-Exchange Membrane Fuel Cell (PEMFC)
- Solid Oxide Fuel Cell (SOFC)
- Direct Methanol Fuel Cell (DMFC)
- Micro Fuel Cell and Micro Sensors

Key Techniques to Polygeneration

Utilization of Natural Gas & Coal

Gas to Liquid (GTL)

Methanol to Olefins (MTO)

3.8 Angstroms

The unique pore size allows the selective conversion to olefins and excludes heavier compounds

Pilot and Demo of the MTO process

Shanxi Coal Company (86million RMB)
 Sinopec Leyang Eng. Comp. (Tech Design)
 DICP (Catalyst & Process)

Dimethyl Ether (DME) and its Manufacture

"Poly-DME-DMM" Diesel Substitution

DME

(DMM)

Dimethyldioxymethylene (DMM_2)

Poly-Dimethoxymethane $(\overline{DMM_x})$

DMM₃₋₈

- Most suitable DME analog
- Can be blended with diesel without engine modifications
- Low emissions in engine testing
- Made from methanol, DME and formaldehyde via low temperature catalytic distillation reactor with acidic catalyst

	DMM	DMM ₂	DMM ₃₋₈
BP, °F	42	105	152-315
Flash Pt., °F	0	<24	65
Cetane No.	28	41	76

PM and NOx Emissions of 7 test fuels

Development of PE Fuel Cell

Hydrogen Related Researches in DICP

Strategy of Bio-Technology in DICP

Biomass Utilization at DICP

Dalian National Lab of Clean Energy

Oil & Gas Conver.	National	Eng. Cent.	Sinopec	
Fuel Cell & hydrogen	State K	ey Lab.	PetroChina	
Bio-Energy	Research C	ent of DICP	Gov. Program	
Solar Energy			Foundation	
Energy Environment	A STAT		Enterprises	
Energy Fundament	William Contraction	and		
Strategic & evalu.				
Energy	Energy Demo		International Co.	
SINOPEC	BP, Gov.	BP、	CNRS, BASF	

Catalysis researches at DICP

the State Key Laboratory of Catalysis (SKLC)

Cooperated with applied research labs.

- Laboratory for Environmental Catalysis and Technology
- Laboratory for Applied Catalysis and Natural Gas Conversion
- Laboratory for Fine Chemicals
- National Center for Catalytic Technology Development

The present research Activities

• Energy Catalysis

Fuel Cell, Hydrogen production, C1 Chemistry, Photocatalysis,

Environmental Catalysis

NOx redution, VOCs oxidation and ultra-deep desulfurization and denitrogenation

- Catalysis for Fine Chemicals and Chiral Products Asymmetric synthesis, selective oxidation and hydrogenation
- Nanocatalysis and Advanced Catalytic Materials Au, Ag and noble metals, CO oxidation
- In-situ, dynamic, time-resolved characterizations
- Theoretical catalysis

Catalyst Characterizations

- In-situ characterization FT-IR, NMR, UV Raman, Laser Raman, TPSR, TGA-DTA, ...
- **Dynamics and kinetics** *PEEM, Time-resolved Spectroscopy, LISF, TPD-Mass,, ...*
- Structures of real catalysts XRD, SEM, TEM, EDX, BET, ...
- Atomic, molecular and nano scale Multi Nano-Probe, HREELS, XPS, AES, LEED,

Achievements: Example 1

UV Resonance Raman Spectroscopic Studies on Catalysis

Non-oxidative Aromatization of Methane

Achievements: Example 3 Applications of Mixed Ion & Electron Conductivity Oxygen Permeable Membrane

Oxygen Production:

100%oxygen permeation selectivity High oxygen permeation Continuous production of oxygen.

Membrane Reactor:

- Combining reaction and air separation into a reactor
- Increasing yield and selectivity by controlling oxygen species
- Being energy efficient and relatively safe to operate
- Avoiding formation of hot spots

Composition of the Research Projects

Applied, 37%

CAS, 15%

MOST, 20%

Fund for skill Fund 12010 NSFC, 16% Applied, 37% Fundamental, ~ 63%

MOST: Ministry of Sci. & Tech. CAS: Chinese Academy of Sciences

Budgets for Research in past years

Researches to be focused

- Scientific bases for renewable energy, environmental begin, human health and better life, and optimized utilization of resources
- Design and synthesis of more active and selective catalysts including based nano materials
- Essential correlation through heterogeneous, homogeneous and enzymatic catalysis. Biocatalysis may play more and more role in synthesis chemistry.
- In-situ, dynamic, spatial and time-resolved characterization together with theoretical calculation may eventually reveal the nature of catalysis and make catalysis a science
- Catalysts with desired functions could be designed and synthesized based on the fundamental understanding

DICP's Activities in International Collaboration

Research Collaboration in DICP

Dispatch and Acceptance of Researchers Domestic and oversea Organizations

Contract Researches
Domestic and oversea
Enterprises

Joint Projects

Domestic and oversea Enterprises

Joint Research Centers

Universities and Enterprises Government Organizations

International and National Research Organizations at DICP

State Key Laboratory of Catalysis State Key Laboratory of Molecular Dynamics

International Joint Labs

- China-France Joint Lab. on Catalysis
 - CAS-BP Energy Innovation Laboratory (EIL)
 - **CAS-MPG Partner Groups**
 - **DICP-Sumsung Joint Lab. on Fuel Cell**
- DICP-Lilly Program on Analysis and Fine Chemicals

Collaboration with the Organizations in Europe

- Fuel Cell Testing, Safety and Quality Assurance
 - Carbon Dioxide Capture via Hydrogen Energy Technology
- SOFC Stack Technology for Operation at 600°C

Cooperation Partner between UCSB and DICP Supported by NSF

THE PARTNERSHIP FOR INTERNATIONAL RESEARCH AND EDUCATION AT THE UNIVERSITY OF CALIFORNIA

ELECTRON CHEMISTRY AND CATALYSIS AT INTERFACES

Alec M. Wodtke, Director Department of Chemistry and Biochemistry Santa Barbara, CA 93106-9510 Phone: (805) 893-8085 Fax: (805) 893-4120 E-mail: wodtke@chem.ucsb.edu

Xueming Yang, Foreign Program Coordinator State Key Laboratory for Chemical Reaction Dynamics Dalian Institute of Chemical Physics 457 Zhongshan Rd. Dalian, Liaoning 116023, P. R. China E-mail: xmyang@dicp.ac.cn pire

science crossing borders...

To Enhance Comprehensive Cooperation at DICP

 Special funds for international cooperation and exchange

(1 million RMB per year for travel and accommodation, i.e. student, postdoctoral researcher)

- Special funds for scientific symposia in DICP (1 million RMB per year for scientific program & costs)
- Open grants and projects for joint research

DICP Symposium

DICP Symposium (10th) on Chemical Physics of Materials — Inauguration Workshop of the MPG-CAS Partner Group

Thank for Attention

Welcome to DICP