Introduction of the Dalian Institute of Chemical Physics (DICP), CAS

Xinhe BAO

Dalian Institute of Chemical Physics, DICP
the Chinese Academy of Sciences, CAS

Tel: 0411 84686637, xhbao@dicp.ac.cn
http://www.fruit.dicp.ac.cn
Contents

- **Introductions**
 - the Dalian Institute of Chemical Physics (DICP)
 - the State Key Laboratory of Catalysis (SKLC)

- **Nano-Catalysis**
 - Nano-film: Quantum well states
 - Nano-Particle: Quantum size effects
 - Nano-pore: Confinement effects
中国科学院大连化学物理研究所
Dalian Institute of Chemical Physics, CAS

Dalian
1hr from Beijing
About the Chinese Academy of Sciences

STRUCTURE:

- **Merit-based Academic Divisions:**
 - Members: 700 inc.
 - 35 Foreign Members

- **Comprehensive National Research Institution:**
 - 90 Institutes,
 - 1 University
 - 1 Postgraduate School
 - Total Staff: 50,000

MISSIONS:

- Scientific Research
- High Technology Development
- Education and Training
- Think Tank of Science Policies
Dimensions of Dalian Institute

Staff Members

- Academ
- Prof.essor
- Assoc. Pr.of
- M dd.
- Pr.im
- Post doc.
- Student s

Graduate Students

- 51 Research Groups and Teams
- 1500 Researchers
Research Organizations of DICP

Basic Research

- State Key Laboratory of Catalysis
- State Key Laboratory of Molecular Dynamics

National Key Projects

- Laboratory of Fuel Cell
- Laboratory of Chemical Lasers
- Laboratory of Materials

Applied Research

Spin-off Companies

- Pesticide Intermediates
- Membrane Technology
- Chromatographer
- Fuel Cell
- Catalyst
Fundamental Researches at DICP

Science 2
Nature 1
Agew. Chem 7
JACS & PRL 11

1 National Science Award
2 National Invention Award
Fundamental Researches in DICP

Quantized Transition States

Science, March 2006
Applied Researches in DICP

- Sustainable Energy
- Resources Optimal Utilization
- Bio-Technologies
Energy Researches in DICP

- **Optimal Utilization of Natural Gas**
 - Production of Syngas via Low-cost Process
 - Syngas Chemistry including FT and Oxygenate Synthesis
 - Direct conversion of Methane

- **Hydrogen Energy**
 - Hydrogen Production from Natural Gas, Lower Alkanes and Resid as well as Methanol
 - Hydrogen Production via Bio-technology
 - Separation of Hydrogen from Carbon Monoxide and Carbon Dioxide by membranes

- **Fuel Cell**
 - Proton-Exchange Membrane Fuel Cell (PEMFC)
 - Solid Oxide Fuel Cell (SOFC)
 - Direct Methanol Fuel Cell (DMFC)
 - Micro Fuel Cell and Micro Sensors
Key Techniques to Polygeneration

- **Chemical Synthesis**
- **WGS**
- **S resistant**
- **Gasifier**
- **Cleaning**
- **SOFC**
- **Methanol**
- **Diesel**
- **Olefins**
- **Ethanol**
- **Separation**
- **Storage**
- **Fuel Cell**
- **Oxygen**
- **H2**
Utilization of Natural Gas & Coal

Resources

Gas
Methane

Coal/Bio-
Future?

Products

Fuel Cell
SOFC

Benzene, H2

Ethylene, Propylene

Alcohols, Ethers,

Gasoline, Diesel

Syngas

H2 CO₂ Cap.

Methanol

含氧化合物

芳香烃和氢

烯烃
Gas to Liquid (GTL)

Syngas
- Coal-based
 - Fe
 - Gasoline, Diesel
 - ICC

Syngas
- Gas-based
 - Co
 - Diesel, Waxes

Pilot test in Ningbo
C2 Oxygenates from Syngas

Coal & Gas

CO + H₂ → CO Conv. 56.4%
Selec. 73.5 wt%

C₂ Oxygenates

EtOH

Hydrogenation

Oxygenation

AcOOH

AcOOEt

Economic. (BP):
Present Tech. 2500 ~ 2800 RMB/ton Eth.
The unique pore size allows the selective conversion to olefins and excludes heavier compounds.
Pilot and Demo of the MTO process

- Shanxi Coal Company (86 million RMB)
- Sinopec Leyang Eng. Comp. (Tech Design)
- DICP (Catalyst & Process)

Diagram with data points and lines on a graph showing conversion rate and selectivity. The graph includes temperature axes labeled in度C (°C).
Dimethyl Ether (DME) and its Manufacture

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Point (°C)</td>
<td>-141</td>
</tr>
<tr>
<td>Vaporization Heat (-20°C, KJ/Kg)</td>
<td>410.2</td>
</tr>
<tr>
<td>Boiling Point (0.1 Mpa, ℃)</td>
<td>-24.8</td>
</tr>
<tr>
<td>Autoignition Temperature (℃)</td>
<td>235</td>
</tr>
<tr>
<td>Critical Pressure (MPa)</td>
<td>5.37</td>
</tr>
<tr>
<td>Critical Temperature (℃)</td>
<td>126.9</td>
</tr>
<tr>
<td>Critical Density (Kg/m³)</td>
<td>0.271</td>
</tr>
<tr>
<td>Ignition Temp (℃)</td>
<td>-41</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.59</td>
</tr>
<tr>
<td>Calorific Value (MJ/Kg)</td>
<td>31.75</td>
</tr>
<tr>
<td>Density (0.5Mpa, Kg/m³)</td>
<td>670</td>
</tr>
<tr>
<td>生成热 (KJ/mol)</td>
<td>-183</td>
</tr>
</tbody>
</table>

(Direct)

Coal & Gas (CH4) → H2 → Syngas → Methanol (CH3OH)

(Indirect)

Syngas → CO → (Dehydro)
“Poly-DME-DMM”_Diesel Substitution

DME
Dimethoxymethane (DMM)
Dimethyldioxymethylene (DMM₂)
Poly-Dimethoxymethane (DMMₓ)

DMM₃₋₈

- Most suitable DME analog
- Can be blended with diesel without engine modifications
- Low emissions in engine testing
- Made from methanol, DME and formaldehyde via low temperature catalytic distillation reactor with acidic catalyst

<table>
<thead>
<tr>
<th></th>
<th>DMM</th>
<th>DMM₂</th>
<th>DMM₃₋₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP, °F</td>
<td>42</td>
<td>105</td>
<td>152-315</td>
</tr>
<tr>
<td>Flash Pt., °F</td>
<td>0</td>
<td><24</td>
<td>65</td>
</tr>
<tr>
<td>Cetane No.</td>
<td>28</td>
<td>41</td>
<td>76</td>
</tr>
</tbody>
</table>

PM and NOx Emissions of 7 test fuels

Source: DOE/SWRL
Hydrogen Related Researches in DICP

- Reforming of Methane, Methanol, Gasoline, Diesel
 - DICP
- CO₂ Sequester.
- Risk evaluation, Fundamental research, DICP
- Manufacture
- Storage
- Transformation
- Distribution
- Utilization
- Fuel cell Combustion
 - DICP, Shengli, Beijing companies
- Electric vehicle
 - Portable power
 - Distributed power station
 - DICP, Shengli, Tsinghua, Tongji
- No current research activity
- Metal hydrides, Shanghai, Beijing
- Carbon nanotube, Shenyang
- Metal polymer, DICP
Strategy of Bio-Technology in DICP

Platform of System Biology

Proteomics
Metabonomics
Interomics (action)

GC-MS-LC-NMR
Fingerprint of Meta. Prod.
Meta. Controlling & Networks
Metabonomics

Protein with DNA
Protein with RNA
Protein with Protein
Protein with Metabolic Products

Chinese Med.

Drug & Targets
Chem. Fingerprints
Bio. Fingerprints

Indu. BioTech

BioMass Conv.
Methane Activ.
Alga Energy

Bio-Materials

Cell Therapy
Stem Cell Eng.
Controlling Deliver
Biomass Utilization at DICP

Biomass
- Residue Harvesting
- Energy Crops

Cat.

Sugar Platform
- Enzymatic Hydrolysis
- Lignin Products

Products
- Fuels, chemicals
- Materials
- Heat & Power

Thermochem. Platform
- Pyrolysis
- Gasification

Biorefineries

Biodiesel from CAS

1MW BGPG Power Plant from CAS
Catalysis researches at DICP

- **Basic Research**
 - State Key Laboratory of Catalysis
 - State Key Laboratory of Molecular Dynamics

- **National Key Projects**
 - Laboratory of Fuel Cell
 - Laboratory of Chemical Lasers
 - Laboratory of Materials

- **Applied Research**
 - Laboratory of Analytical Chemistry
 - Laboratory of Fine Chemicals
 - Laboratory of Chemical Engineering
 - Laboratory of Applied Catalysis
 - Division of Bio-Technology
the State Key Laboratory of Catalysis (SKLC)

Academic Committee
 Chair: Prof. Michel Che
 Co-chairs: Prof. Mingyuan He
 Prof. Xinhe Bao

Director of SKLC
 Prof. Can Li

International Advisory Committee

Catalytic Chemistry
 Prof. Wenjie Shen

Nano & interfacial Catalysis
 Prof. Xinhe Bao

Molecular Catalysis & In-situ Studies
 Prof. Can Li

Membrane Catalysis & Catalytic Materials
 Prof. Weishen Yang

Organo-Inorganic Catalytic Materials
 Prof. Qihua Yang

Theoretical Catalysis
 Prof. Weixue Li

Cooperated with applied research labs.

- Laboratory for Environmental Catalysis and Technology
- Laboratory for Applied Catalysis and Natural Gas Conversion
- Laboratory for Fine Chemicals
- National Center for Catalytic Technology Development
The present research Activities

- **Energy Catalysis**
 Fuel Cell, Hydrogen production, C1 Chemistry, Photocatalysis,

- **Environmental Catalysis**
 NOx reduction, VOCs oxidation and
 ultra-deep desulfurization and denitrogenation

- **Catalysis for Fine Chemicals and Chiral Products**
 Asymmetric synthesis, selective oxidation and hydrogenation

- **Nanocatalysis and Advanced Catalytic Materials**
 Au, Ag and noble metals, CO oxidation

- **In-situ, dynamic, time-resolved characterizations**

- **Theoretical catalysis**
Catalyst Characterizations

- **In-situ characterization**
 - FT-IR, NMR, UV Raman, Laser Raman, TPSR, TGA-DTA, ...

- **Dynamics and kinetics**
 - PEEM, Time-resolved Spectroscopy, LISF, TPD-Mass, ...

- **Structures of real catalysts**
 - XRD, SEM, TEM, EDX, BET, ...

- **Atomic, molecular and nano scale**
 - Multi Nano-Probe, HREELS, XPS, AES, LEED,
UV Resonance Raman Spectroscopic Studies on Catalysis

Achievements: Example 1
Non-oxidative Aromatization of Methane

\[6\text{CH}_4 \rightarrow \text{Ben} \: + \: 9\text{H}_2 \; \text{Mo/ZSM-5} \]

Frustration chemicals

Eng.

Graph showing trend from 1993 to 2003.
Oxygen Production:
- 100% oxygen permeation selectivity
- High oxygen permeation
- Continuous production of oxygen

Membrane Reactor:
- Combining reaction and air separation into a reactor
- Increasing yield and selectivity by controlling oxygen species
- Being energy efficient and relatively safe to operate
- Avoiding formation of hot spots

Applications of Mixed Ion & Electron Conductivity Oxygen Permeable Membrane

- Oxygen depleted
- MIECM

Dense ceramic membrane with mixed oxygen ionic and electronic conductivity

- Partial oxidation of hydrocarbons
- Selective oxidation of hydrocarbons
- Oxidative dehydrogenation of hydrocarbons

Achievements: Example 3
Composition of the Research Projects

- Applied, 37%
- MOST, 20%
- NSFC, 16%
- CAS, 15%
- Fund for SKL, 12%

MOST: Ministry of Sci. & Tech.
CAS: Chinese Academy of Sciences

Applied, 37%
Fundamental, ~ 63%
Budgets for Research in past years

<table>
<thead>
<tr>
<th>Year</th>
<th>Million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>7</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>2001</td>
<td>13</td>
</tr>
<tr>
<td>2002</td>
<td>16</td>
</tr>
<tr>
<td>2003</td>
<td>19</td>
</tr>
<tr>
<td>2004</td>
<td>22</td>
</tr>
<tr>
<td>2005</td>
<td>22</td>
</tr>
</tbody>
</table>
Reseurches to be focused

- Scientific bases for renewable energy, environmental begin, human health and better life, and optimized utilization of resources
- Design and synthesis of more active and selective catalysts including based nano materials
- Essential correlation through heterogeneous, homogeneous and enzymatic catalysis. Biocatalysis may play more and more role in synthesis chemistry.
- In-situ, dynamic, spatial and time-resolved characterization together with theoretical calculation may eventually reveal the nature of catalysis and make catalysis a science.
- Catalysts with desired functions could be designed and synthesized based on the fundamental understanding.
DICP’s Activities in International Collaboration
Research Collaboration in DICP

- Dispatch and Acceptance of Researchers
 - Domestic and overseas Organizations

- Contract Researches
 - Domestic and overseas Enterprises

- Joint Projects
 - Domestic and overseas Enterprises

- Joint Research Centers
 - Universities and Enterprises
 - Government Organizations
International and National Research Organizations at DICP

State Key Laboratory
- State Key Laboratory of Catalysis
- State Key Laboratory of Molecular Dynamics

National Eng. Center
- Membrane Sci. & Tech.
- Catalysis
- Hydrogen and Fuel Cell

International Joint Labs
- China-France Joint Lab. on Catalysis
- CAS-BP Energy Innovation Laboratory (EIL)
- CAS-MPG Partner Groups
- DICP-Sumsung Joint Lab. on Fuel Cell
- DICP-Lilly Program on Analysis and Fine Chemicals
Collaboration with the Organizations in Europe

- Fuel Cell Testing, Safety and Quality Assurance
- Carbon Dioxide Capture via Hydrogen Energy Technology
- SOFC Stack Technology for Operation at 600°C
- Gene Technique with Uni. of Aarhus
- Oligosaccharides with TCM-denmark
- CAS-BP Clean Energy Program
- DICP-Cambridge Training Project
- Metabolomics for Traditional Chinese Medicine
- Catalysis
- Joint Lab of Catalysis with CNRS
- PEM Fuel Cell with Lund Institute of Technology
- Sino-Swedish Workshop on FC
- MPG-CAS Partner Group
- DFG-NSFC Fuel Cell Program
- DICP-BASF INCON project
- DICP-Bayer Project
Cooperation Partner between UCSB and DICP
Supported by NSF

THE PARTNERSHIP FOR INTERNATIONAL RESEARCH AND EDUCATION AT THE UNIVERSITY OF CALIFORNIA

ELECTRON CHEMISTRY AND CATALYSIS AT INTERFACES

Alec M. Wodtke, Director
Department of Chemistry and Biochemistry
Santa Barbara, CA 93106-9510
Phone: (805) 893-8085
Fax: (805) 893-4120
E-mail: wodtke@chem.ucsb.edu

Xueming Yang, Foreign Program Coordinator
State Key Laboratory for Chemical Reaction Dynamics
Dalian Institute of Chemical Physics
457 Zhongshan Rd.
Dalian, Liaoning 116023, P. R. China
E-mail: xmyang@dicp.ac.cn
To Enhance Comprehensive Cooperation at DICP

- Special funds for international cooperation and exchange
 (1 million RMB per year for travel and accommodation, i.e. student, postdoctoral researcher)

- Special funds for scientific symposia in DICP
 (1 million RMB per year for scientific program & costs)

- Open grants and projects for joint research
Thank for Attention

Welcome to DICP