ETTH Didgenössische Technische Hachschule Zärich Swips Federal Institute of Technology Zarich

Structure of heterogeneous catalysts using X-ray absorption spectroscopy

Jeroen A. van Bokhoven

Swiss Federal Institute of Technology (ETH) Zurich

Abbreviations

XAS X-ray Absorption Spectroscopy

- EXAFS Extended X-ray Absorption Fine-Structure
 - X-ray Absorption Near-Edge Structure
- NEXAFS Near-Edge X-ray Absorption Fine Structure

XANES

X-rays

X-ray absorption through matter

 $dI = -\mu(E)I dx$ I = I₀ exp(- $\mu(E)x$)

•

Creation of a photo-electron $E_{kin} = hv - E_{Binding}$

Element specific

Transition probability $P \Box \left| \left\langle \Psi_i \middle| T \middle| \Psi_f \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \nu}$

Scatter pattern is function of

- # of neighbors, CN
- Distance, R
- Kind of neighbor
- Disorder in R and CN, DWF

- EXAFS (χ) Extended X-ray Absorption Fine-Structure Single scattering
- XANES X-ray Absorption Near-Edge Structure Multiple scattering

$$μ = μ_0 (1 + χ)$$

Edges over the Periodic Table

Information in the spectra?

How are the X-rays made?

Synchrotrons provide high flux of X-rays

ESRF, Grenoble

Spring-8 Japan APS Chicago

All light sources http://www.lightsources.org/

under construction:

Soleil (Paris)

STORAGE RING

UNDULATOR

Experimental Hutch

BM26 (DUBBLE), ESRF Grenoble

The experiment

XAS in Catalysis

Goal Local structure of catalysts under well-defined conditions precursor state during / after activation during reaction deactivation time-resolution (few msec) space-resolution (few μ m)

.

Sample environment Absorption of X-rays is limiting factor

Find a good window material

- Size of window
- Thickness
- Inertness
- Temperature resistance
- Pressure
- Safety

pressure temperature environment Transmission through 25 μm and 1 mm

In situ EXAFS cells for gas-solid reactions

Reaction gas mixture flows around a pellet Reaction gas flows through a catalyst pellet

Large dead volume Good for stationary conditions

Critical d/l (smaller effectivity of the catalyst) Small Glass Reactor with very thin windows (0.01mm)

Small dead volume Optimal d/I Good for structural changes Structure-activity relations

Grunwaldt et al. PCCP 6 (2004) 3037

; /

XANESX-ray Absorption Near-Edge StructureMultiple scattering

EXAFS Extended X-ray Absorption Fine-Structure Single scattering

EXAFS

Scatter pattern is function of

- # of neighbors, CN
- Distance, R
- Kind of neighbor
- Disorder in R and CN, DWF

EXAFS data analysis

$$\chi(k) = \sum_{i} N_{i} F_{i}(k) \Box \frac{S_{0}^{2}}{kR_{i}^{2}} \exp\left(\frac{-2R_{i}}{\lambda}\right) \exp\left(-2\sigma_{i}^{2}k^{2}\right) \sin\left(2kR_{i} + \varphi_{j}(k)\right)$$

Scatter Damping Disorder power

Temperature effect on EXAFS / XANES

Getting structural information from EXAFS

$$\chi(k) = \sum_{i} NF_{i}(k) \left[\frac{S_{0}^{2}}{kR_{i}^{2}} \exp\left(\frac{-2R_{i}}{\lambda}\right) \exp\left(-2\sigma_{i}^{2}k^{2}\right) \sin\left(2kR_{i} + \varphi_{j}(k)\right) \right]$$

 F_{j} , ϕ_{j} , and S_{o}^{2} from reference compound or theory

Coordination number	6.8 2.76 Å
∆DWF	0.0058
C3	9 E-6
C4	3E-6

R (Å)

Accuracy?

Summary

Adsorption of X-rays through matter

Local structure

Probing empty DOS

Measurement conditions (> 1500 K; >200 bar)

Amorphous, liquid, or crystalline samples

Time resolution (~msec)

Less than a monolayer on flat support

High energy resolution fluorescence detected XAS

Emission Spectroscopy

e.g. Pt (L3 edge): Lα1 (L3-M5) = 9442

Some transitions more likely to occur then others

High energy resolution fluorescence detected XAS

High energy resolution fluorescence detected XAS

Good

- High energy-resolution
- Hard X-rays: in-situ

Not so good

- · Low yield of good photons
- No time-resolution

Gold whiteline: spd-rehybridization results in 5d^{10-x}6sp^{1+x}

Adsorption of CO on Pt/Al₂O₃

High energy resolution fluorescence detected XAS

FEFF8 simulation

Structure of adsorption sites can be determined FEFF8 reproduces experiment and provides LDOS

Structure of Aluminum in Zeolites in extreme conditions Development of in-situ XAFS for low Z elements

Zeolites

SEM of Beta

Beta

ZSM-5

Y-zeolite

Acid sites in zeolites

Brønsted:

Lewis:

Octahedral or three coordinate?? Essentially unknown

Zeolite Activation by Steaming

- Pore-topology (mesopores)
- Loss of Brønsted acid sites
- Lewis acid sites
- Dealumination of framework
- Extra-framework aluminum

Structure – performance relations

Detailed structure?

Structure - Activity Relationship

Q: What is structure of a zeolite under reaction / treatment conditions?

In-situ spectroscopy:

observe changes as function of varying conditions

Time resolution

Aluminum coordination as function of conditions *Al K-edge X-ray Absorption Spectroscopy*

In-situ AI K-edge XAFS on zeolitic samples

1995

- No experimental *in-situ* cell
- Limited structural information from near-edge spectra
- No theoretical basis of spectra

In-situ AI K-edge XAFS Strong absorption of X-rays

Developed Instrumentation

Fluorescence and electron yield detection Polymer coated Be windows

van Bokhoven *J. Synchr. Rad.* **6** (1999) 201 van der Eerden *Rev. Sci. Instrum.* **71** (2000) 3260

Developed Instrumentation

Installed at Station 3.4 SRS Daresbury SRS has a cell

AI K-edge XAFS

Characteristics: **Octahedral Al** Quantitative Normalised Absorption Conditions: 100 < T < 1000K**Overlapping peaks** 2 $10^{-6} < P < 10^{3}$ mbar 5-10 min per spectrum Solid -gas / -liquid systems **Tetrahedral Al** Si/AI ratios > 50 (< 1wt% AI) Coordinations:

1560

1570

1580

Energy (eV)

1590

- Edge position
- Shape
- Intensity

Al coordinations from XAS spectra

Samples

Crystalline zeolites in H-form, in-situ calcination of NH₄ zeolite H-Beta H-Mordenite H-Y

Activated zeolites through steam dealumination H-USY

Amorphous silica-alumina (14% AI_2O_3)

Measurements Conditions

Low T: in presence and absence of low Pp water High T: in vacuum

AI XAFS at low temperature

Measurement conditions:

- Samples in a wet environment: flowing He / H₂O
- Room temperature

Octahedral Al in H-Beta

AI XAS vs ²⁷AI MAS NMR

Resumé

- Acidic zeolites have octahedral AI only when H₂O is present
- Octahedral forms at room temperature Wouters J. Am. Chem. Soc. **120** (1998) 11419
- Octahedral aluminium not stable at T > 120 C
- Beta, Mordenite and zeolite Y show same behavior A

Zeolite Steam-acivation: Octahedral Al

Coordination changes with condition

Local Structure of the Zeolitic Catalytically Active Site During Reaction

What do we know?

- BAS is bridging hydroxyl group
- Theory: distorted tetrahedral

Haw JACS 124 (2002)10868

NMR in dehydrated conditions gives extreme broad peaks

Kentgens JACS 123 (2001) 2925

In situ generation of BAS Oligomerization of olefins over the BAS

AI EXAFS at various temperatures

At T>RT $C_2^{=}$ oligomerization

Partial / complete oxidation of hydrocarbons methane, alkenes, methanol

Hydrogenation / dehydrogenation reactions alkenes, alkynes, alkadienes, (un)saturated ketones

Methanol synthesis

 $\begin{array}{rcl} \mathsf{CO} + 2\mathsf{H}_2 \ & \rightarrow & \mathsf{CH}_3\mathsf{OH} \\ \mathsf{CO}_2 + 3 \ \mathsf{H}_2 \ & \rightarrow & \mathsf{CH}_3\mathsf{OH} + \mathsf{H}_2\mathsf{O} \end{array}$

WGS $H_2O + CO \rightarrow CO_2 + H_2$

Nitric Oxide reduction (with CO, olefins, or H₂)

CO oxidation 1925: Active in CO oxidation highly active in presence of H_2 : Haruta Catal. Today 36 (1997) 153 Selective CO removal, air purification, high-purity N_2 and C

Physical properties

- bulk metallic gold is thermodynamically stable
- melting point and metallicity of the particle is function of particle size

Physical properties

- bulk metallic gold is thermodynamically stable
- melting point and metallicity of the particle is function of particle size

Haruta Cattech 3 (2002) 102

Physical properties:

- bulk metallic gold is thermodynamically stable
- melting point and metallicity of the particle is function of particle size

CO oxidation: particle-size effect

Large support effects:

SiO₂: hardly active Al₂O₃, MgO: moderately active (TiO₂) Fe₂O₃, CeO₂, other reducible supports: very active & less dependent on particle sizes; No clear relation to reducibility of support

Active species in gold oxidation catalysis?

- Carbonate-mechanism excluded
- Small particles become active as soon as they are non-metallic (Goodman)
- Oxidic gold (I or III) is active species (Gates)
- Theory supports both gold-only and support-aided mechanism
- Support supplies oxygen via molecularly (activated) adsorbed oxyger

via Mars van Krevelen

How is oxygen activated on the catalyst?

How can the most inert metal be so active?

Nørskov et al. Angew. Chem. 44 (2005) 1824

Small gold particles adsorb oxygen (and react)

EXAFS Cell

- LN < T > 600 °C
- 10⁻⁶ < P > 3 bars
- Catalysts measured as sieve fraction / pellet
- Combined with mass-spectrometer
- (Near) plug-flow characteristics

Structure of gold catalysts

Sample Preparation

- Deposition precipitation HAuCl₄ adjusted pH
- Washing with a base to remove chlorine

Supports Al₂O₃, SiO₂, CeO₂, TiO₂, ZrO₂, Nb₂O₅

Full EXAFS & XANES analyses

Temperature-Programmed Reduction

Direct reduction from Au(III) to Au(0) (on all supports) Reduction temperature is strong function of support

EXAFS Fitting Results of Reduced Catalysts

EXAFS Fitting Results of Reduced Catalysts

Strong reduction in Au-Au distance with particle size No visible influence of support

Exposure to 20% O_2

	CN	R(Å)	%Au(III)
Reduced	3.6	2.72	0
Reox. RT	3.6 / <mark>0.3</mark>	2.72 / <mark>2.04</mark>	10
Reox. 225C	2.7 / <mark>0.5</mark>	2.71 / <mark>2.04</mark>	15

At most 10-15% reoxidation

XAS during CO Oxidation

	CN(Au)	R(Au)		
Не	6.5	2.77		
1:1	5.3	2.73		
2:1	5.7	2.73		
1:2	5.2	2.77		
Small oxygen contribution				

More intense with more CO: holes in the d-band (anti-bonding states)

Au L₃: spectra simulation

Full multiple scattering calculations (FEFF8)

Charge transfer: d-band holes CO different from oxygen

Au / TiO₂

Gold catalysts and activation of oxygen

- Under (diluted) O₂: surface oxidation (Au/Al₂O₃ & Au/TiO₂)
- Switch to CO/O₂: CO keeps gold reduced

Reduced gold is active phase Gold participates in oxygen activation

Van Bokhoven Angew. Chem. (2006) VIP

Bulk gold is most inert metal: Single Au crystals are unreactive

What is different in small particles?

Whitelines reflect number of holes in the d-band

Gold whiteline: spd-rehybridization results in 5d^{10-x}6sp^{1+x}

Mattheiss, L.F. et al. Phys. Rev. B 1980, 22, 1663

Whitelines reflect number of holes in the d-band

Whiteline intensity versus particle size *Difference intensity with bulk*

Six supports, one trend Larger particles fewer d-electrons

FEFF8 simulations

Smaller particles have different electronic structure affected by coordination number and s,p,d-bands

No support effect on number of d-electrons

Projected DOS

- Rehybridization of spd-orbitals (5d^{10-x}6sp^{1+x})
- · Smaller particles have fewer holes in the d-band
- · Particle size dominates support-effect
- Oxygen is activated on gold particle

XAS

- Structure: bond lengths, coordination numbers, DWF
- Geometry
- Oxidation states
- In-situ conditions
- Element specific

Sample damage Model free data fitting Asymmetric distribution functions Mixtures (Bulk technique)

Summary

d-LDOS

Energy (eV)

Acknowledgement

Eveline Bus and Professor Prins (ETH)

Dr. Weiher (ETH)

Dr. Miller (BP)

Drs. Glatzel and Safonova (ESRF)

Dr. Tromp (Southampton University)

Professor Ramaker (GWU)

Professor Koningsberger (UU)

Swiss National Fonds (\$\$)

