Size-Selected Au_n and Ag_n Nanoclusters on Rutile TiO₂(110): Cluster Shape, Binding Site and Electronic Structure Probed by UHV-STM Xiao Tong, Lauren Benz, Steeve Chrétien, Paul Kemper, Horia Metiu, Michael T. Bowers and <u>Steven K. Buratto</u>

Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106

Funding: AFOSR – DURINT Program

Motivation

Lee, S et al. J.Phys.Chem., 123, 124710 (2005)

Instrumental Setup

P. Kemper et al., Int. Jour. Mass Spec., 254, 202 (2006)

Energy Spread (eV)

STM of a Clean TiO_2 (110)-(1x1) Surface

U. Diebold et al. / Surface Science 411 (1998)

U. Diebold et al. Surf. Sci. 411 (1998) 137 S. Suzuki et al. PRL 84, (2000), 2156 R. Schaub et al. PRL 87, (2001), 266104 S. Wendt et al. PRL 96, (2006), 66107

Clean TiO_2 (110)-(1x1) Surface

Gold Soft Landing

Au_n^+ (n = 1 – 8) clusters with average incident energies of 0 eV

Deposition of Au_1 - Au_3

of clusters

0

25 Å

STM of Soft-landed Mass-selected Au_n⁺ Clusters

X. Tong, L. Benz, P. Kemper, H. Metiu, M.T. Bowers, and S.K. Buratto, J. Am. Chem. Soc. 127 16516 (2005)

Adsorption sites of Au₂

Adsorption sites of Au₃

95%

*

5%

$D_{e} = 1.76 \text{ eV}$

 $D_{e} = 2.08 \text{ eV}$

 $D_{e} = 2.00 \text{ eV}$

*All gas phase structures from Gilb, S. et al. JCP 116, 4094, (2002)

Deposition of Au_5 and Au_6 Au_5

Height: $2.6 \text{ Å} \pm 0.6 \text{ Å}$

Height: $2.3 \text{ Å} \pm 0.7 \text{ Å}$

Adsorption sites of Au₅

2.5

, 2.0 Height, Å 1.0

0.5

0.0

16%

67%

13%

Deposition of Au₇

 $D_{e} = 1.52 \text{ eV}$

D_e = 1.41 eV

D_e = 1.72 eV

 $D_{e} = 1.56 \text{ eV}$

Deposition of Au₄

Height: $1.7 \text{ Å} \pm 0.2 \text{ Å}$

Adsorption sites of Au₄

Au₈ Clusters on TiO₂(110)

Silver Soft Landing

Ag_n^+ (n = 1 – 5) clusters with average incident energies of 0 eV

Height: $1.5 \text{ Å} \pm 0.3 \text{ Å}$

L. Benz, et al. J. Chem. Phys. 122 081102 (2005)

Adsorption sites of Ag₃

94%

Deposition of Ag₄ and Ag₅

Adsorption sites of Ag₄

54%

34%

8%

 $D_{e} = 1.16 \text{ eV}$

 $D_{e} = 0.99 \text{ eV}$

Adsorption sites of Ag₅

 $D_{e} = 1.33 \text{ eV}$

D_e = 1.77 eV

 $D_{e} = 1.90 \text{ eV}$

DFT Desorption Energies

Summary (so far)

- Ag₁, Ag₂, and Au₁ are mobile on the surface of titania
- Ag_{3-5} and Au_{2-8} remain intact on the surface
- DFT suggests a binding mechanism which involves ligation of the clusters by O atoms of neighboring bridging O rows, resulting in the appearance of clusters over 5-c Ti rows, consistent with STM images
- $Au_{2-4} (Ag_{3-4})$ form structures which appear "flatter" than structures formed from $Au_{5-7} (Ag_5)$

Density of vacancies between clusters depends on cluster size?!!!

Density of vacancies increases with density of Au₃ decreases

Each Au₃ eliminated ~1.5 o-vacancies

Density of vacancies increases following the removal of Au₃

removed Au₃ due to interaction of tip with Au₃

disappeared vacancy

Density of vacancies increases with tip-sample bias increase on Au₃ covered surface

Vs=1.4V, I =0.20nA

> Vs=1.6V, I=0.20nA

Sintering of Au₃ Clusters: Diffusion of Intact Cluster

Au₃ clusters after anneal

Intact size-selected clusters

Gold Hard landing

Au₁⁺ clusters with incident energies of 0 - 190 eV

Deposition of Au₁ with increased Kinetic Energy 500Å x 500Å 100Å x 100Å

L. Benz, et al. J. Chem. Phys. 122 081102 (2005)

Deposition of Au₁ with increased Kinetic Energy 500Å x 500Å 100Å x 100Å

L. Benz, et al. J. Chem. Phys. 122 081102 (2005)

Deposition of Au₁ with increased Kinetic Energy 500Å x 500Å 100Å x 100Å

0.01 ML Au₁, KE = 190 eV Followed by 0.01 ML KE = 0 - 2 eV

L. Benz, et al. J. Chem. Phys. 122 081102 (2005)

Deposition of Au₁ with increased Kinetic Energy

 \bigcirc

Propene Desorption from TiO₂

Ajo, H.M., Bondzie, V.A., and Campbell, C.T. Cat. Let., 78, (2002)

 $T_{p} \sim 200 \text{ K}, 1 \text{K/s}$

 $T_p \sim 190$ K, 5 K/s

Determination of E_{des}*

Redhead, P.A., Vacuum, 12, 203 (1962)

Rate of Desorption, N(t) = $-d\sigma/dt = \sigma_n \sigma^n \exp(-E/RT)$

Where n is the order of the desorption reaction σ is the surface coverage (molecules/cm²) σ is the rate constant E is the activation energy of desorption Assuming a linear heating rate, T = T_o + β t, where β is the rate (K/s), t is time

 $E/RT_p^2 = (\sigma_1/\beta)exp(-E/RT_p)$ for n = 1

The relation between E and Tp is nearly linear and for $10^{13} > \sigma_1/\beta > 10^8$ (K⁻¹) is given to $\pm 1.5\%$ by:

 $E/RT_p = \ln(\sigma_1 T_p/\beta) - 3.64$

So for Tp = 190, β = 5 K/s, E=47.3 kJ/mol (Ajo) Tp = 200, β = 1K/s, E = 52.5 kJ/mol

✓ Good agreement, within $\sim 10\%$

Propene on 0.1 ML Au on TiO₂

500Å x 500Å

Effect of Large Au Clusters on Propene Desorption

Ajo, H.M., Bondzie, V.A., and Campbell, C.T. Cat. Let., 78, (2002)

STM of Au-covered TiO₂ after sputtering and annealing

1000Å x 1000Å

500Å x 500Å

Presence of small Au centers, possibly $Au_1 - Au_3$

TPD: (after sputtering and annealing)

STM Images: Effect of TPD

After "dry run" from 100K to 600K (no O_2 present) Au₃ features still on Ti⁴⁺ rows, so heat ramp does not sinter clusters After TPD (100K - 600K) 100L O₂ total exposure

Conclusions / Future Experiments

- Au clusters (few nm) bind propene more strongly than the titania substrate
- Small Au clusters (few Å) bind propene more strongly, narrow D_e distribution
- Exposure to O₂ induces sintering of Au₃

- Perform TPD and XPS on hard-landed Au₁
- Install O source
- Pre-expose surface to O before deposition
- Perform TPR to monitor propylene epoxidation
- Image while exposing Au clusters to gas