# Applications of Neutron Scattering Methods in Heterogeneous Catalysis

# B. (More) Examples:

Propylene Epoxidation

Methane Decomposition

Hydrogen Spillover

# Juergen Eckert

Materials Research Laboratory University of California at Santa Barbara

# Epoxidation in Titanosilicate

- TS-1 -- utilizes aqueous hydrogen peroxide as oxidant<sup>1</sup>
- Benign coproduct  $(H_2O)$
- Commercial interest for catechol/hydroquinone and alkene oxide production
- Ethylene oxide (6 billion lbs/y US) - ethylene glycol, polyesters, polyethers, polyols, ...
- Propylene oxide (3 billion lbs/y US) - polyols, polyethers, ...



# Propylene Oxide Applications



# Micro-, Mesoporous and Molecular Ti-silicates

### <u>TS-1</u>

- Ti-silicalite with 5.5 Å openings



### <u>Ti-MCM-41</u>

- amorphous silica with 20 - 30 Å pores





- Cyclopentadienyl Ti-silsesquioxane

# MFI Framework Structure

- channels along y-axis and staggered channels follow the x-axis
  - 3D connectivity ZSM-5 structure
- Straight
  - channel openings are ~5.5
     Å in diameter
- Orthorhombic (at RT), Pnma
  - 12 different T sites
  - 26 Oxygen sites



Silicon atoms
 Oxygen atoms located
 between Si's

# Titanium Silicalite-1 (TS-1): Structure

- Start with silicon-oxygen MFI framework
- Substitute 0-3% of the silicon with titanium
  - Site isolated Ti centers for catalysis
  - Presence of Ti in framework determined by EXAFS, powder X-ray diffraction, XANES, DRUV-Vis, XPS, and MAS-NMR
  - No direct evidence of Ti position or if Ti has preference for certain Si sites
- Study correlation between Ti environment in framework and catalytic properties

# Iron Silicalite-1 (FeS-1)

- Iron replaces a small amount (<5%) of Silicon
  - same as TS-1, MFI structure
- Fe<sup>3+</sup> vs. Si<sup>4+</sup>
  - framework will be negatively charged
  - Na<sup>+</sup> or H<sup>+</sup> in channels to balance charge
- Determine if Fe occupies the same sites as Ti using neutron diffraction





# Some Theoretical Predictions for TS-1

| Ti Siting<br>in TS -1 | Researchers                        | Method                                                 |
|-----------------------|------------------------------------|--------------------------------------------------------|
| Random                | Millini et al.                     | molecular mechanics & quantum<br>chemical calculations |
| Т8                    | Oumi et al. with<br>Perego et al.  | molecular dynamics paired<br>w/lattice expansions      |
| T12                   | Oumi et al. with<br>Millini et al. | molecular dynamics paired<br>w/lattice expansions      |
| T2 and T12            | Njo et al.                         | mme & molecular mechanics                              |

# Neutron Diffraction Data

- Collected neutron diffraction data at Los Alamos Neutron Science Center (LANSCE)
  - used HIPD at the Manuel Lujan Neutron Scattering Center
  - at room temperature
  - three TS-1 samples with Si: Ti mole ratios of
    - 20:1 (A)
    - 30:1 (B & C)
  - one FeS-1 sample with Si:Fe mole ratio of
    - 70:1 (D)

```
Note - neutron scattering lengths (fm = 10<sup>-15</sup>m):
Si 4.15
Fe (natural) 9.45 (isotopes) 2.3 to 15
Ti -3.44 (natural) (isotopes) -6.08 to 6.18
```

# Structural Disorder

- Ti-O and Fe-O have longer bond lengths than Si-O
  - oxygens connected to Ti's will move off ideal locations to lengthen the bonds
  - cause disorder of these oxygens in a crystal structure
- Ti/Fe/Si-OH bonds
  - for charge compensation owing to Fe<sup>+3</sup> or to cation vacancies
  - move oxygens off ideal sites and add extra atoms into structure
- Thermal parameters of both Si and O's ranged widely
  - from negative to large positive values
  - refined isotropic thermal parameters by type
    - all O's equivalent
    - all Si's equivalent

# Structure Refinement

- Used General Structure Analysis System (GSAS) software package for structure refinement
- Starting atomic positions were from the X-ray crystal structure of H-ZSM-5 determined by Van Koningsveld
  - titanium and iron were not included in the initial models
- Atomic positions and thermal parameters were held at their original values and occupancies for Si were refined
  - if occ <1.0, Ti was placed on that site for samples A-D
  - if occ >1.0, Fe was placed on that site for sample E

# **Refinement Statistics**

| Sample         | А          | В          | С           | D          |
|----------------|------------|------------|-------------|------------|
| Space Group    | Pnma       | Pnma       | Pnma        | Pnma       |
|                | 8          | 8          | 8           | 8          |
| a              | 20.044(4)  | 20.062(10) | 20.086(8)   | 20.014(17) |
| b              | 19.866(4)  | 19.880(10) | 19.903(8)   | 19.885(17) |
| С              | 13.369(8)  | 13.387(8)  | 13.399(7)   | 13.361(14) |
| V              | 5323.3(36) | 5339.3(49) | 5356.2 (41) | 5317.3(86) |
| #refl          | 3497       | 3519       | 3634        | 3529       |
| #var           | 174        | 180        | 181         | 171        |
| R <sub>p</sub> | 0.0164     | 0.0171     | 0.0139      | 0.0088     |
| $R_{WP}$       | 0.0270     | 0.0278     | 0.0225      | 0.0142     |
| $\chi^2$       | 3.115      | 2.975      | 3.158       | 3.704      |

### Neutron Powder Diffraction Pattern of TS-1(top) and FeS-1 (bottom)



# Titanium Siting

- Five of the twelve sites were found to contain Ti or Fe
- Total Ti occupancies were constrained to maximum amount for TS-1 (2.5%) and for Fe, based on chemical analysis
- T8 was found to contain the most Ti/Fe for each sample

| Sample | Metal | Т3  | Τ7  | Τ8   | T10 | T12  | Total Metal/ |
|--------|-------|-----|-----|------|-----|------|--------------|
|        |       |     | -   |      |     |      |              |
| A      | Ti    | 6.7 | 0   | 10.2 | 4.0 | 10.6 | 2.52         |
| В      | Ti    | 3.8 | 4.3 | 11.5 | 5.1 | 6.2  | 2.47         |
| С      | Ti    | 7.1 | 0   | 12.1 | 6.1 | 5.9  | 2.49         |
| D      | Fe    | 0   | 0   | 19   | 0   | 0    | 1.52         |

T-site occupancies (%) in TS-1 and FeS-1

# TS-1 with Ti Sites



| T3 - red              | (4% Ti)  |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| T7 - blue             | (4% Ti)  |  |  |  |  |
| T8 - green            | (12% Ti) |  |  |  |  |
| T10 - gray            | (5% Ti)  |  |  |  |  |
| T12 - magenta (6% Ti) |          |  |  |  |  |

### • Ti siting in TS-1 and Fe siting in FeS-1 is not random

- the Ti, Si, and oxygen form 6-membered ring clusters
- these clusters are ordered within the MFI structure
- T8 is the preferred site for both Ti and Fe
- Ti is mainly located at the channel intersections
  - close to the TPA<sup>+</sup> templating agent
  - more room available for  $H_2O_2$  and for reactants
  - Preferred siting is reminiscent of proposed precursor (Jacobs et al.) observed during synthesis
  - Later experiments all find (somewhat) different, but always non-randow distribution of Ti
  - Suggests that Ti incorporation is under kinetic influence



# Cluster Used for Semiempirical QM Studies



Ti green Si gray O red H white

### Calculated Ti Substitution Energies at Various T Sites in TS-1



• - Sites found by neutron diffraction to be occupied by Ti.

# Ti Site Preferences in TS-1 Zeolite Template - Defect Binding Energies

Calculated Ti - OH<sup>-</sup> NMe<sub>4</sub><sup>+</sup> Binding Energies (kcal/mol)

red squares denote observed sites



New Calculations on Propylene Epoxidation with  $H_2O_2$ : Effect Of the Presence of Water and of the System Size (Stare, Henson, Eckert)

Conventional cluster calculation



### "Gas Phase" Calculation









While additional water molecules have very small effect on the reaction energy, they significantly lower the activation barrier by providing a proton transfer pathway from the abstracted oxygen atom of  $H_2O_2$  back to the distant one, a process resulting in formation of a water molecule.

### Size matters!

Use ONIOM embedding scheme (QM/MM) to treat a more realistic model.





Propene epoxidation: Gold on Titania catalysts

# $H_2C=CH-CH_3 + O_2 + H_2$ Au on TiO<sub>2</sub> $H_2$ , C-CH-CH<sub>3</sub> + $H_2$ O

Discovered about 10 years ago by Haruta et al.

# Gold on titanium catalysts

- Highly disperse gold catalysts developed for low-temperature CO oxidation
- Only epoxidation activity with hydrogen and oxygen
- Metallic gold inactive in epoxidation (and CO oxidation)
- Titania inactive in epoxidation using oxygen/hydrogen (active using hydrogen peroxide)



Catalyst activity based on phasecooperation between gold and titanium

Mechanism ?

# TYPES OF METAL CATALYSTS



**A: Metal Single Crystals** 

Surface Area = ~1 cm<sup>2</sup>



Surface Area = ~0.1 cm<sup>2</sup>

**B: Planar oxide-supported metal catalysts** 



Surface Area = ~100 m<sup>2</sup>/g

C: High Surface area oxide-supported metal catalysts

# **CO-OXIDATION ACTIVITY AS A FUNCTION OF CLUSTER SIZE**



Goodman, et. al Science (1998) Catal. Lett (1998)

# **PREPARATION of nano-Au CATALYSTS**

### **Catalyst Synthesis (DP)**

Gold Precursor :  $Au_6(PPh_3)_6(BF_4)_2$ 

- Solvent : Di-chloromethane
- Support :  $TiO_2$  (P-25, Degussa); 78% anatase

### **Pre-treatment Procedure**

Calcination @ 400° C (LTC) Calcination @ 500° C (HTC) Reduction@ 500° C ; calcination@400° C (HTR/LTC) \*Calcination @ 500° C; reduction@ 400° C (HTC/LTR)

# **EFFECT OF PRE-TREATMENT:** Au<sub>6</sub>/TIO<sub>2</sub>

### CO conversion: Sivadinarayana etal and Goodman Catal. Lett. (1999); J. Catal (2000)



# **EFFECT OF PARTICLE SIZE WITH HTR/LTC**



# TEM of 1% Au<sub>6</sub>/ TiO<sub>2</sub> WITH HTR/LTC



# Inelastic Neutron Scattering Experiments: propene epoxidation

Catalyst

appr. 3g of Au (1% wt.) on TiO<sub>2</sub>

• Technique:

Flow a gas mixture ( 70% He, 10% H<sub>2</sub>, 10% O<sub>2</sub>, 10% propene ) over the catalyst in reactor at a 150 C for 3 hours

Quench the reaction in liquid nitrogen (77 K); keep reactor cold

Collect INS spectrum at 30 K

• Identify reaction intermediates and products at the surface of the catalyst by their vibrational spectra



-bare Au (1% wt.)/TiO<sub>2</sub> catalyst

-this spectrum was subtracted from all of the following: -propene on Au/TiO<sub>2</sub>; RT gas flow -propene reacted with H<sub>2</sub> and O<sub>2</sub> in He, gas flow, 150 C, 3hrs. -H<sub>2</sub>, O<sub>2</sub>, in He reacted over Au/TiO<sub>2</sub>; gas flow, 150 C, 4 hrs.

### -Reference Spectra:

-bulk solids (propene, propene oxide)

-in lieu of gas phase spectra

-adsorbate (propene on TS-1)

-possible products adsorbed on Au/TiO<sub>2</sub>:
-water
-propene oxide
-proprionaldehyde
-acrolein

-acetaldehyde

### Catalysis by Gold nanoparticles on metal oxide supports





Small particles (~ 3nm) of Au supported on TiO<sub>2</sub> show significant catalytic activity and selectivity

Examples: oxidation of CO (top; below) oxidation of propylene

(Haruta, M. Cattech 2002, 6, 102)



# Catalysis by supported Au nanoparticles



Suggests that Au/TiO<sub>2</sub> interface is important

- Why consider Au for catalysis?
- Au surfaces are catalytically inactive!
- But, small, hemispherical Au particles show surprising activity AND selectivity in oxidation (e.g. of propylene) at low T
- And, Au is less expensive than Pt
- What is the active site/species?



### Reaction of hydrogen and oxygen over $Au/TiO_2$

What is the active species in propene epoxidation?



proposal for hydroperoxy species by Haruta and others

React just  $H_2$  and  $O_2$  over  $Au/TiO_2$  (He, 150 C); INS



Landon et al. Chem Comm.**2002**, 2058 - formation of  $H_2O_2$  over  $Au/Al_2O_3$  (n methanol, 2C)

### Reaction of hydrogen and oxygen over $Au/TiO_2$

INS spectra (20 K) of quenched reaction; adsorbed water for reference (arb., scaling) (bare catalyst spectrum subtracted)

Note: INS spectrum dominated by modes involving large amplitude H motion



Reaction of hydrogen and oxygen over  $Au/TiO_2$ 

Tentative identification of INS spectral features using literature data -experiment and calculations:

-hydrogen peroxide (matrix isolation study: Petterson et al.)
-peroxy radical (matrix isolation study; Nelander)
-peroxy radical/water complex (calc.; Aloisio and Francisco\*)
-water on oxide surfaces (numerous INS studies)

### Assignments:

Water librations: 630, 770, 835 cm<sup>-1</sup>  $O_2H...$  v(OO) ~ 1065 cm<sup>-1</sup>  $\delta(OOH)$  1505 cm<sup>-1</sup>  $H_2O_2$ : v(OO) ~ 900 cm<sup>-1</sup>  $\delta_a(OOH)$  1230 cm<sup>-1</sup>  $\delta_s(OOH)$  1440 cm<sup>-1</sup>



\* Peroxy radical/water complex J. Phys Chem A **1998**, 102, 1899

### Propene adsorbed under RT gas flow conditions

propene/He mixture, STP, at RT ,250 mL/min., 45 min., LN<sub>2</sub> quench



Propene (solid, TS-1, Au/TiO2)

# What spcies might we expect under these conditions?

On TiO<sub>2</sub>:

On Au:  $\pi$ -or di- $\sigma$  bonded propene

INS spectrum is a superposition of modes from all species present. reflects relative numbers.

Hi-frequency region contains too many modes inadequate resolution - is for IR, Raman ?

Low-frequency region good for INS !!

# Propene adsorption – desorption Titania *versus* Au-TiO<sub>2</sub>





Presence of gold causes interaction / reaction between propene and Ti(O/OH)

### Propene adsorbed under RT gas flow conditions

propene/He mixture, STP, at RT ,250 mL/min., 45 min., LN<sub>2</sub> quench



Note bands at 265, 290, ~350, 600, 825, etc. : 2nd species Correspond to d- $\sigma$  Os<sub>2</sub> complex (N. Sheppard et al.), or... **Need computational studies !!!** 

### PROPENE IN HETEROGENEOUS CATALYSIS, I

### TABLE 2

| Modes <sup>a</sup>        | CH <sub>3CH</sub> =CH <sub>2</sub> | CD <sub>3</sub> CD=CD <sub>2</sub> | CD <sub>3</sub> CH=CH <sub>2</sub> | CH <sub>3</sub> CH=CH <sub>2</sub> /Ni | CD <sub>3</sub> CD=CD <sub>2</sub> /Ni | CD <sub>3</sub> CH=CH <sub>2</sub> /Ni |
|---------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Stretch(CH <sub>1</sub> ) | 3073                               | 2315                               | 3095                               | 3044                                   | 2300                                   | 3095                                   |
| Stretch(CH)               | 3010                               | 2245                               | 3010                               | 2996                                   | 2220                                   | 3010                                   |
| Stretch(CH <sub>2</sub> ) | 2990                               | 2200                               | 2984                               | 2956                                   | 2195                                   | 2984                                   |
| Stretch(CH <sub>3</sub> ) | 2935                               | 2230                               | 2226                               | 2931                                   | 2220                                   | 2226                                   |
| Stretch(CH <sub>2</sub> ) | 2880                               | 2120                               | 2070                               | 2876                                   | 2110                                   | 2070                                   |
| Stretch(CC)               | 1640                               | 1582                               | 1642                               | 1242                                   | 1423                                   | 1242                                   |
| Bend(CH <sub>3</sub> )    | 1456                               | 1040                               | 1038                               | 1448                                   | 1040                                   | 1038                                   |
| Bend(CH <sub>2</sub> )    | 1430                               | 1013                               | 1418                               | 1516                                   | 995                                    | 1510                                   |
| Bend(CH <sub>2</sub> )    | 1367                               | 1040                               | 1060                               | 1388                                   | 1040                                   | 1060                                   |
| Bend(CH)                  | 1290                               | 960                                | 1296                               | 1361                                   | 911                                    | 1346                                   |
| Stretch(CC)               | 1164                               | 1142                               | 1157                               | 1154                                   | 1137                                   | 1115                                   |
| Rock(CH <sub>3</sub> )    | 936                                | 710                                | 777                                | 933                                    | 709                                    | 777                                    |
| Rock(CH <sub>2</sub> )    | 930                                | 777                                | 860                                | 930                                    | 777                                    | 860                                    |
| Bend(CCC)                 | 424                                | 350                                | 390                                | 468                                    | 350                                    | 390                                    |
| Stretch(CH <sub>3</sub> ) | 2960                               | 2200                               | 2195                               | 2901                                   | 2195                                   | 2195                                   |
| Bend(CH <sub>a</sub> )    | 1440                               | 1040                               | 1050                               | 1432                                   | 1040                                   | 1050                                   |
| Wag(CH <sub>3</sub> )     | 1040                               | 870                                | 872                                | 1032                                   | 846                                    | 826                                    |
| Wag(CH)                   | 995                                | 732                                | 1000                               | 992                                    | 730                                    | 996                                    |
| Wag(CH <sub>2</sub> )     | 906                                | 710                                | 913                                | 883                                    | 710                                    | 913                                    |
| Twist(CH <sub>2</sub> )   | 577                                | 437                                | 530                                | 581                                    | 440                                    | 530                                    |
| Twist(CH <sub>3</sub> )   |                                    |                                    |                                    | —                                      | -                                      |                                        |
| Stretch(M-C)              |                                    |                                    |                                    | 426                                    | 420                                    | _                                      |
| Stretch(M-C)              | ~                                  | ~                                  |                                    | 359                                    | 337                                    | 350                                    |

### Fundamental Frequencies of Free and Complexed Propenes (-190°C, cm<sup>-1</sup> Units)



GULERANA SHAHID and NORMAN SHEPPARD

(<u>π</u>)







### Propene reacted with $H_2$ and $O_2$

Propene reacted with H2 and O2 on Au/TiO2



Comparison (top) of INS spectra of: bulk PO PO adsorbed on Au/TiO<sub>2</sub> propene reacted  $(H_2/O_2)$ 

and (below left),

spectrum of  $H_2/O_2$  reacted over Au/TiO<sub>2</sub>

Reaction conditions should not have produced appreciable quantities of other products(e.g. propanal, acetone, ethanal)

### Propene reacted with $H_2$ and $O_2$



Comparison of INS spectra of: bulk PO PO adsorbed on Au/TiO<sub>2</sub> propene reacted (H<sub>2</sub>/O<sub>2</sub>)

PO skeletal modes strongly affected by binding to catalyst upon formation

Peaks at 630, 850, 1230cm<sup>-1</sup> are from reaction products: coordinated water,  $H_2O_2$ 

Computational studies could resolve remaining questions

PO torsion shifts - splits, or new mode (formation of oxometallocycle?)





### Catalytic Decomposition of Methane for H<sub>2</sub> Production

C. Sivadinarayana, T. V. Choudhary, L. L. Daemen, J. Eckert and D. W. Goodman" Angew. Chem. Int.'l Ed. 41, 144, (2002).

- Economical (and clean) Hydrogen production is one of the most critical issues for the "Hydrogen Economy" - for use in fuel cells (produce no CO<sub>2</sub>)
- Hydrogen is abundant in nature as methane (CH<sub>4</sub>), but conversion processes to H<sub>2</sub> either produce CO<sub>2</sub> or are costly for production H<sub>2</sub> of sufficient purity (< 1.5% CO in H<sub>3</sub>PO<sub>4</sub> fuel cells)

 $\square$  Catalytic decomposition of  $CH_4$  into carbon and hydrogen may be an attractive solution.

□ A process based on catalysts presents a number of problems (e.g., production of CO by reaction of C with O in the metal-oxide support).



Investigate methane decomposition on Ni- and Ru-supported catalysts as a method for the production of CO-free (< 50 ppm) hydrogen





# Catalytic Decomposition of CH<sub>4</sub>

Materials studied: Ni on SiO<sub>2</sub> and Ru on Al<sub>2</sub>O<sub>3</sub>; metal loading was 10%; measured specific area was about 5 m<sup>2</sup>/g.



- Technique:
  - Flow a 10% mixture of  $CH_4$  in Ar over the catalyst contained in a small reactor at a fixed temperature for 4 hours; the flow rate was 0.9 L per minute.
  - Quench the reaction by dropping the reactor in liquid nitrogen (77 K);
  - Mount the reactor on closed-cycle refrigerator cold finger and cool to 20 K.
  - Collect INS vibrational spectrum.
- Identify with neutrons the set of intermediate chemical species at the surface of the catalyst.





## Results



We find species well known from EELS/Single Crystal Surface studies - now on a real catalyst; examples (assignments made the "usual" way):

**EXAMPLE** (methylidyne)  $\delta$ (CH) ~ 830 cm<sup>-1</sup>

 $\equiv$  C – CH<sub>3</sub> (ethylidyne) v(MCCH<sub>3</sub>) ~ 410 cm<sup>-1</sup>

 $=CH_2$ 



(vinylidene)  $\tau$ (CH<sub>2</sub>) ~ 670 cm<sup>-1</sup>



□ Methylidyne is clearly present: most stable decomposition product.

Evidence for C agglomeration, namely C2 species ethylidyne and vinylidene. This is only the second time that ethylidyne has been observed on Ni. (It does not appear to occur on Ni single crystal surfaces used in HREELS studies.)\*

□ The higher reaction temperature (T=325 °C) produces less of ethylidyne species.

Computational studies needed for more definitive species identification

Feasibility of quenching catalytic reactions for the determination of intermediate and product species by INS vibrational spectroscopy

\* The carbon produced could in fact be useful





| Ni @ 250 °C<br>(cm <sup>-1</sup> ) | Ni @ 325 °C<br>(cm <sup>-1</sup> ) | Ru @ 250 °C<br>(cm <sup>-1</sup> ) | Ru @ 325 °C<br>(cm <sup>-1</sup> ) | Tentative<br>assignment               |
|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------|
|                                    |                                    | 270                                |                                    | v(MCCH <sub>2</sub> ) <sub>s</sub> V  |
|                                    |                                    | 380                                |                                    | v(MCCH <sub>2</sub> ) <sub>as</sub> V |
|                                    |                                    |                                    |                                    |                                       |
|                                    |                                    | 410                                |                                    | v(MCCH <sub>3</sub> ) <sub>s</sub> E  |
| 570                                |                                    | 560                                |                                    | v(MCCH <sub>3</sub> ) <sub>as</sub> E |
| 670                                | 650/700*                           | 670                                |                                    | τ(CH <sub>2</sub> ) V                 |
| 840                                | 900*                               | 830                                | 790                                | δ(CH)                                 |
| 1020                               |                                    | (broad)                            | 1040                               | v(C-C) E; o(CH <sub>3</sub> ) E       |
| 1190                               | 1230                               | 1220                               | 1250                               | D(CH2) V                              |
| 1300                               |                                    | 1300                               |                                    | $\delta(CH_2) V$                      |
| 1470                               | 1460                               | 1485                               |                                    | δ(CH <sub>3</sub> ) E                 |
| 1550                               | 1550                               | 1600                               |                                    | v(C=C) V                              |

Notes: (1) v(MC) for CH should also be contained in the bands below 600 cm<sup>-1</sup> – calculations

are needed to help with mode assignment.

(2) E = ethylidyne; V = vinylidene; M = metal (Ni or Ru)

\* The origin of the splitting is not clear.

 $\equiv$  CH (methylidyne)

 $\equiv$  C – CH<sub>3</sub> (ethylidyne)

 $=C=CH_2$  (vinylidene)



From A. D. Lueking (ACS 2005)

# Hydrogen Spillover on Supported Metal Catalysts

(<sup>°</sup>. C. H. tchell et al. , J. Phys. Chem.B 2003, 107, 6838)



Types of H observed:

H "riding" on C - bound to edge sites (comparison with coronene spectrum)

H "riding" on Pt, Ru

"spillover" H - weakly bound, diffusing

C-supported Pt, Ru and Pt/Ru fuel cell catalysts (Johnson/Matthey)

INS spectra collected on samples with:

- (1) Fast  $H_2$  uptake at RT, 10-30min.
- (2) Slow  $H_2$  uptake at 500K, several days

"Spillover" H (mobile) - (2)





# 

## Ir<sub>6</sub> clusters in Faujasites: H<sub>2</sub> Spillover

(Bruce Gates, Fen Li, UCD)

dispersed Metal Clusters are important Industrial Catalysts Role of support is still not well understood

interaction between metal cluster and support includes -OH groups on the support

molecular H<sub>2</sub> apparently dissociate on the metal cluster and "spillover" onto the support, forming OH groups.

the metal is oxidized in this process

use INS and  $D_2/H_2$  exchange to observe details of hydrogen spillover

**Note**: this experiment was first attempted some time (?!) ago on BT-4 (NIST reactor).





Vayssilov et al., Angew. Chem. Int.'l Ed. 2003, 42, 1391.

Computation (Rh<sub>6</sub> cluster, left) finds "reverse spillover" from surface -OH, 3H per cluster

Wavenumber (cm<sup>-1</sup>)



### Ir<sub>6</sub> clusters in Faujasites: H<sub>2</sub> Spillover: INS studies

(Fen Li, Bruce Gates (UCD); Luke Daemen, Monika Hartl, and Juergen Eckert, Z. Phys. Chem., in press)

 $\delta$  (IrH)

Reaction steps all carried out **in-situ** on the spectrometer, same sample (bottom up):

- 7. Re-exchanged with  $H_2$  at RT
- 6. Exchanged with  $D_2$  at 200°C
- 5. H<sub>2</sub> adsorbed at 200°C
- 4.  $H_2$  adsorbed at RT
- 3. Previous sample evacuated
- 2. Ir6/Nay "as-prepared"
- 1. bare, calcinedNaY zeolite



 $\delta(OH)$ 

**Notes**: Exchange carried out at at 80 torr, several adsorption/evacuation cycles Also observe H-Ir "riding modes" at low frequency (< 150 cm<sup>-1</sup>)