Heterogeneous Catalysis: From Imagining to Imaging a Working Surface

D. Wayne Goodman Texas A&M University Department of Chemistry

- Introduction to issues
- Studies of model catalysts with surface analytical methods: special properties of metal nanoclusters
- **O** Thermal stability of metal nanoclusters
- **O** Strategies for designing sinter resistant catalysts

Heterogeneous Catalysis

- Production of transportation fuels (440 oil refineries)
- Production of chemicals
- Cleanup of automotive/industrial exhaust gases
- "Green" chemistry (unwanted byproducts)

Heterogeneous Catalysis

- Production of transportation fuels (440 oil refineries)
- Production of chemicals
- Cleanup of automotive/industrial exhaust gases
- "Green" chemistry (unwanted byproducts)

Ammonia Synthesis

- Production of transportation fuels (440 oil refineries)
- Production of chemicals
- Cleanup of automotive/industrial exhaust gases
- "Green" chemistry (unwanted byproducts)

Carbon Monoxide and Nitric Oxide

- Production of transportation fuels (440 oil refineries)
- Production of chemicals
- Cleanup of automotive/industrial exhaust gases
- "Green" chemistry (unwanted byproducts)

Carbon Monoxide and Nitric Oxide

- Production of transportation fuels (440 oil refineries)
- Production of chemicals
- Cleanup of automotive/industrial exhaust gases
- "Green" chemistry (eliminate unwanted byproducts)

"Green" Chemistry with Catalysts

Example: ethylene to ethylene epoxide

$$C_2H_4 + \frac{1}{2}O_2 \rightarrow C_2H_4O$$

Old non-catalytic route (epichlorohydrine process):

Step 1: $Cl_2 + NaOH \rightarrow HOCI + NaCI$ Step 2: $C_2H_4 + HOCI \rightarrow CH_2CI-CH_2OH$ Step 3: CH₂CI-CH₂OH + 1/2Ca(OH)₂ \rightarrow ¹/₂CaCl₂ + C₂H₄O + H₂O $CI_2 + NaOH + 1/2 Ca(OH)_2 + C_2H_4 \rightarrow C_2H_4O + 1/2 CaCI_2 + NaCI + H_2O$ Total: **Catalytic route: CI promoted Ag catalyst** $C_{2}H_{4} + 1/2O_{2} - C_{2}H_{4}O$ $C_3H_6 + \frac{1}{2}O_2 \rightarrow C_3H_6O$

Unique Catalytic Activity of Nanosized Gold Particles

Unique Catalytic Activity of Nanosized Gold Particles

from Haruta, et al., <u>Catalysis</u> <u>Letters</u> (1997)

TEM Image of Gold Supported on Titania (from M. Date, ONRI)

Model Oxide-Supported Metal Catalysts

Pd on FeO(111)/Pt(111)

S. Shaikhutdinov, R. Meyer, D. Lahav, M. Baeumer, T. Kluener, H.-J. Freund Phys. Rev. Lett. (2003)

$Au/TiO_2(110):1D \rightarrow 2D \rightarrow 3D$

M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998)

Unique catalytic activity of Au/TiO₂(110) 0.295 Au-Au: 0.288 0.324 2.2 001] $CO + 1/2O, \rightarrow CO,$ 1.8 $CO:O_2 = 1:5$ Activity 1'4 $P_T = 40 \text{ Torr}$ 1.0 [110] 0.6 0 8 10 0 2 6 Cluster size (nm)

M. Valden, X. Lai, and D. W. Goodman, Science 281 (1998) 1647.

30nm x 30nm

Unique properties of Au/TiO₂(110)

D. C. Meier, D. W. Goodman, J. Am. Chem. Soc. 126 (2004) 1892.

Ultraviolet Photoelectron Spectroscopy (UPS): Defects on TiO₂(110)

Krischok, Guenster, Goodman, Hoefft, and Kempter, submitted for publication

Role of Oxygen Defects in Metal Cluster Nucleation and Growth on TiO₂(110)

oxygen vacancies

Bridging oxygen vacancies are the active nucleation sites for Au clusters

a) STM image of a small Au clusters on TiO_2 . Vacancies are marked with squares. b) Simulated STM image of a single Au atom trapped in a oxygen vacancy. c) Line profiles comparing DFT theoretical results and experiment.

E. Wahlstroem, N. Lopez, R. Schaub, P. Thostrup, A. Ronnau, C. Africh, E. Laegsgaard, J. K. Norskov, and F. Besenbacher, Phys. Rev. Lett. 90, 101 (2003)

Au on TiO₂(110): Cluster Anchored via Reduced Titania

DFT shows that Au nanoparticles promote the exchange of oxygen vacancies between the surface and bulk of titania *Rodriguez et al, J. Am. Chem. Soc., 124 (2002) 5242*

and

Single oxygen vacancy can bind 3 Au atoms on average

E. Wahlstroem, N. Lopez, R. Schaub, P. Thostrup, A. Ronnau, C. Africh, E. Laegsgaard, J. K. Norskov, and F. Besenbacher, Phys. Rev. Lett. 90, 101 (2003)

Reduced Titania Surface: TiO_x/Mo(112)

Chen et al., Surf. Sci. Lett. (2005), & Science 306 (2004) 252.

1.0 monolayers Au: (1x1)-Au/TiO_x/Mo(112)

1.33 monolayers Au: (1x3)-Au/TiO_x/Mo(112)

M. S. Chen and D. W. Goodman, Science 306 (2004) 252; STM: Chen et al. (2006)

Relative Catalytic Activity of Mono- and Bi-layer Au/TiO_x

Similarity of Au nanoparticles & the (1x3) well-ordered bilayer

Both form 1D-like chain for the topmost Au atoms!

Summary: Properties of Supported Au Nanoclusters

- Adsorbate binding energies, e.g. CO and O₂, change significantly from the bulk values for clusters < 3.0 nm.
- DFT calculations show center of Au d-band significantly destabilized for Au/TiO₂ compared to Au.
- Core-level shifts are markedly non-bulk-like at <ca. 3.0 nm.
- Surface plasmon not observed for clusters <ca. 3.0 nm.
- Sublimation energies of clusters < 3.0 nm are markedly lower than the corresponding bulk value.
- Nanoclusters are generally unstable to reaction conditions, i.e., understanding and maintaining stability is a key to technological break-throughs.

CO Oxidation Over Au/TiO₂ as a Function of Reaction Time

Sintering Mechanisms

P. Wynblatt and N. A. Gjostein, Acta Metallurgica, 24, 1165 (1976)

interparticle transport

Atom Migration (Ostwald Ripening) : atoms/atom ensembles migrate to adjacent clusters to form larger clusters

 μ – chemical potential; σ – surface free energy M/ ρ – atom volume; r – cluster radius

Gibbs-Thompson relationship

STM: 0.5 MLE Au/TiO₂ (110), CO/O₂ (1:1), 4.2 Torr @ 420K

Yang and Goodman, 2004

Sintering Mechanisms

P. Wynblatt and N. A. Gjostein, Acta Metallurgica, 24, 1165 (1976)

interparticle transport

Atom Migration (Ostwald Ripening) : atoms/atom ensembles migrate to adjacent clusters to form larger clusters

 μ – chemical potential; σ – surface free energy M/ ρ – atom volume; r – cluster radius

Gibbs-Thompson relationship

particle migration/coalescence

Cluster Migration : Clusters migrate along the surface, collide with others and coalescence

Au/TiO₂(110) Before and After Annealing to 950K

As deposited

After a 950K x 30 min. anneal

100 nm Kolmakov and Goodman, <u>Chem. Rev.,</u> 2003

Role of support in metal activation & cluster sintering:

SiO₂ versus TiO₂?

Model Oxide-Supported Metal Catalysts

Preparation & Characterization of Ultra-thin, Well-ordered SiO₂/Mo(112)

Schroeder, Adelt, Richter, Naschitzki, Baumer, and Freund. Surf. Rev. Lett. 7 (2000)

- 1. Si @RT
- 2. O₂ @ 800K
- 3. Anneal @1200 K

0.7 nm thick, sharp hexagonal LEED with a band gap ~8.9 eV (STS)

Defects on SiO₂ Surfaces Studied by Metastable Electron Impact Spectroscopy: MIES

Au Cluster Nucleation on Low-Defect Versus High-Defect SiO₂

"Au + Low Defect SiO₂"

"Au + High Defect SiO₂"

0.40 ML of Au 0.033 ML/min 300 K

0.40 ML of Au 0.033 ML/min 300 K

0.7 ML Au at room T

0.7 ML Au after a 850 K anneal

Au Cluster Nucleation on Defective SiO₂

Sintering of Au Clusters on SiO₂

200 nm

200 nm

• Sintering of Au on SiO₂ more facile than on TiO₂ i.e, Au binds less strongly to SiO₂ than to TiO₂

Strategies for a Sinter-Resistant Support: TiO₂ Dispersed onto and into SiO₂

TiO_x Islands Dispersed on SiO₂

1.0 ML SiO₂/Mo(112)

0.2 ML TiO_x/SiO₂/Mo(112)

Au Particles Deposited onto TiO_x Islands Dispersed on SiO₂

0.2 ML TiO_x/SiO₂/Mo(112)

100 nm

0.4 ML Au/TiO_x/SiO₂/Mo(112)

-100 nm

Au/SiO₂ versus Au/TiO_x/SiO₂: 850 K Anneal

"before"

+ 0.4 ML Au

+ 0.4 ML Au

"after"

100 nm

Ti Point Defects on SiO₂

15 nm

15 nm

STM: TiO_x-SiO₂ Thin Film with 8% Ti

Decoration of Ti Point Defects with Gold

Conclusions

- Catalytic reactivity and selectivity are markedly different for clusters < ~3.0 nm.</p>
- Core-level shifts, valence band structure, sublimation energies, and adsorbate binding energies are unique for clusters < ~3.0 nm.</p>
- Nanoclusters are generally unstable to reaction conditions, i.e., understanding and maintaining stability are the keys to technological breakthroughs.

Hi-press STM Fan Yang Patrick Han

IRAS Tao Wei Matt Lundwall

STM Mingshu Chen

HREELS Zhen Yan Ming-shu Chen

PM-IRAS Yun Cai

" ISS Kai Luo Stepahnus Axnanda

> **Rx-XPS** Dheeraj Kumar Mingshu Chen

Lo-T IRAS Cheol-Woo Yi

MIES Sungsik Lee Hi-SA Supported Catalysts Zhen Yan Bo Wang

Au Cluster Density After The Indicated Treatment Normalized To The Cluster Density After Nucleation At Room Temperature

XPS Core Level Shifts: Au/SiO₂ vs. Au/TiO₂

DFT Calculations for Au and Au/TiO₂(110)

Yang, Wu, Goodman, PRB (2000)

