The use of STM & SXRD to study catalysis... ... at 'realistic' conditions

PIRE-ECCI-ICMR Summer conference, UCSB, August 24 2006

Bas Hendriksen*, Marcelo Ackermann, Stefania Bobaru, Joost Frenken Kamerlingh Onnes Laboratory, Leiden University, The Netherlands

Marcelo Ackermann, Odile Robach, Ioana Popa, Hyo Kim, Carlos Quiros, Salvador Ferrer *European Synchrotron Radiation Facility, Grenoble, France*

* now at Lawrence Berkeley National Laboratory, Berkeley, CA, USA

The pressure gap
The 'Reactor STM'
CO oxidation on platinum
Platinum in pure CO
Pt(110) in CO+O2
Pd(100) in CO+O2
SXRD on Pt(110)

 $CO + \frac{1}{2}O_2 \rightarrow CO_2$

Key question: What is the relation between surface structure and activity (and selectivity)

Langmuir-Hinshelwood

$$\frac{d\theta_{CO}}{dt} = k_1 P_{CO} (1 - \theta_{CO} - \theta_O) - k_2 \theta_{CO} - k_3 \theta_{CO} \theta_O$$

$$\frac{d\theta_O}{dt} = k_4 P_{O_2} (1 - \theta_{CO} - \theta_O)^2 - k_5 \theta_O^2 - k_3 \theta_{CO} \theta_O$$

Langmuir-Hinshelwood

Langmuir-Hinshelwood

segregation & restructuring

Decomposition at steps

8

Vang et al. Nature Materials 4 (2005) 160

Figure 1 Ethylene decomposition on NI(111) and Ag/NI(111). a, STM image $(200 \times 200 \text{ Å}^2)$ of a N(111) surface after exposure to ethylene $(10^{-8} \text{ torr}; 100 \text{ s})$ at room temperature. A brim of decomposed ethylene is formed along the step edges. b, STM image $(400 \times 400 \text{ Å}^2)$ of a N(111) surface with the step edges blocked by Ag atoms. No decomposition of ethylene is observed on this modified surface.

Wintterlin et al. Science 278 (1997) 1931

Figure 1. Series of STM images, recorded during reaction of adsorbed oxygen atoms with co-adsorbed CO molecules at 247 K, all from the same area of a Pt(111) crystal. Before the experiment, a submonolayer of oxygen atoms was prepared (by an exposure of 3 Langmuirs O_2 at 96 K, a short annealing to 298 K, and cooling to 247 K), and CO was continuously supplied from the gas phase ($P_{CO} = 5 \times 10^8$ mbar). At this pressure, the impingement rate of CO molecules is about 1 monolayer per 100 s, where the zero-coverage sticking coefficient on the empty and oxygen-covered surface is about 0.7 (8); the times refer to the start of the CO exposure. The structure at the upper left corner is an atomic step of the Pt surface. Image sizes, 180 Å by 170 Å; tunneling voltage (with respect to the sample), +0.5 V; tunneling current, 0.8 nA

Adsorbate induced restructuring

<u>10 Å</u>

Gritsch et at. (1989)

CO on Pt(110)

Thostrup et al. J.Chem. Phys. 118 (2003) 3724

(a) t=385s

(b) t=1075s

(c) t=1248s

Bridging the pressure gap

Surface Science

ultrahigh vacuum systems (ultralow pressure): -keeps the surface clean -required by experimental techniques

Catalysis

'ex-situ' electron microscopy

'ex-situ' STM

Co(0001) before & after CO/H2

100 11.00 计合数 step 0.201 o (ne **(b)** Emm3 0.03

Wilson & De Groot, J. Phys. Chem. 99 (1995) 7860

Ru(0001) after O2

H. Over et al. , Science 287 (2000) 1474

Contribution of the gas phase

Chemical potential

$kT\ln$

Ab initio calculations

http://www.fhi-berlin.mpg.de

Reuter & Scheffler, PRB 68 (2003) 045407

Surface structure and reactivity

- During catalysis: surface structure and composition still the same?
- Changes of surface: cause or result of catalytic activity?

"High" pressure surface sensitive techniques

Increase operating pressure by differential pumping:

X-ray Photoelectron Spectroscopy: composition, adsorbed species Transmission Electron Microscopy: atomic structure, morphology

No a priori pressure limitation:

PM-RAIRS: vibrational spectroscopy
 Sum Frequency Generation spectroscopy
 Scanning Tunneling Microscopy: atomic structure, morphology
 Surface X-Ray Diffraction: crystal structure, adsorbate structures

Scanning tunneling microscopy (STM)

Carbon atoms of graphite

Using STM to bridge the pressure gap

Scanning tunneling microscope

McIntyre (1992) Laegsgaard (2001) Kolmakov (2001)

Using STM to bridge the pressure gap

Pt(110)

(c)

Room temperature, P=1.6 bar

Cu(110) in hydrogen at 298K

Osterlund et al. Phys. Rev. lett 86 (2001) 460

B.J. McIntyre et al., J.Vac.Sci.Technol. A, 11 (1993)

Using STM to bridge the pressure gap

The 'Reactor STM'

The 'Reactor' STM

CO on Pt(111)

2.2 Å 200 Å 200 Å

FIG. 1. 3D representation of an STM image obtained in 200 Torr CO. Image size is 200 Å \times 200 Å, sample bias is +109 mV, and tunneling current 0.52 nA. Height scale is greatly exaggerated to display corrugation on the terraces. Hexagonal arrays of maxima can be observed on each terrace due to a CO monolayer forming a moiré structure. The alignment of the hexagonal array is the same in each terrace.

Jensen at al. PRL 80 (1998) 1228

Moiré pattern: $\sqrt{19} \times \sqrt{19} R23.4^{\circ}$

CO overlayer structure!

Vestergaard et al., PRL 88 (2002) 259601

BH et al. Top. Catal. 36 (2005) 43

Careful! gases are never 100% clean...

Pt(111) in 1 bar of 'pure' oxygen at 293K

Pt(110): missing-row reconstruction

(1x2)-"missing row"

[001]

Step pattern: fish-scale structure

Adsorbate induced restructuring

<u>10 Å</u>

Gritsch et at. (1989)

CO on Pt(110)

Thostrup et al. J.Chem. Phys. 118 (2003) 3724

1x2 ('fish scale') \rightarrow **1x1 ('tiger skin')**

Platinum in flowing gas mixture: mainly CO

'fish scale'→'tiger skin' →smooth

Pt(110) in $Ar/O_2/CO$ T=425K P_{tot}=1.25 bar

140 nm x 140 nm

8h:31min

Platinum in flowing gas mixture: mainly CO

'fish scale'→'tiger skin' →smooth

Pt(110) in $Ar/O_2/CO$ T=425K P_{tot}=1.25 bar

140 nm x 140 nm

8h:31min

Platinum in flowing gas mixture: mainly CO

'tiger skin' →smooth

 P_{tot} = 0.5 bar T = 425 K

 $P_{tot} = 0.5 \text{ bar}$ T = 425 K $t_{total} = 3h:12m$

 P_{tot} = 0.5 bar T = 425 K t_{total} = 3h:12m

Roughness: cause or effect?

Roughness: cause or effect?

Switch from low to high activity

Switch from high to low activity

X[nm]

Height variations that are not Pt(110)

Mars-Van Krevelen reaction mechanism

Surface oxide

Quantitative relation between pressures

Quantitative relation between pressures

Quantitative relation between pressures

Two surfaces – two branches

On both branches, CO₂ production depends

- ... on the minority species
- In the roughness (structure)

Switching also noticed on poly-Xtalline Pt, Ir, Pd o Turner et al., Surf.Sci. **109**, 310 (1981)

 $P_{tot} = 0.5 \text{ bar}$ T = 425 K $t_{total} = 3h:12m$

Comparison with 'real' catalysts...

Turner et al. Surf. Sci. 103 (1981) 54, Surf. Sci. 109 (1981) 591

Comparison with 'real' catalysts...

J.E. Turner et al., Surf.Sci. **103**, 54 (1981)

Comparison with 'real' catalysts... Palladium

Turner et al. Surf. Sci. 103 (1981) 54, Surf. Sci. 109 (1981) 591

Pt(111) similar to Pt(110): structural effects P_{tot} = 1.25 bar T = 478 K

high reaction rate: **oxide** \leftarrow P_{co} < P_{th} $\stackrel{1}{\downarrow}$ P_{co} > P_{th} \rightarrow low reaction rate: **metal**

← 140 nm →

 $P_{co} < P_{th} \rightarrow high reaction rate: oxide$

Pd(001): similar to Pt surfaces

Pd(001) at 1.25 bar and 408K

Bistability on Pd(001)

Bistability on Pd(001): Oscillations!

High-P Surface X-Ray Diffraction

Beamline ID03

High-P Surface X-Ray Diffraction

ID03 Beamline:

- Base pressure 10⁻⁹ mbar
- Max pressure 2 bar
- 300 < T < 1200 K
- Reactor volume ~ 1 L
- **On-line QMS**

360° beryllium window

Incoming X-Ray beam

Sample position

Constructive interference of the x-ray wave with the atomic lattice of the crystal.

$$q = k' - k \quad a_{1,}a_{2}, a_{3} \quad I \propto \left| F(q) \sum_{n_{1} = -\infty}^{\infty} \sum_{n_{2} = -\infty}^{\infty} \sum_{n_{3} = -\infty}^{\infty} e^{iq \cdot (n_{1}a_{1} + n_{2}a_{2} + n_{3}a_{3})} \right|^{2}$$

Laue condition for diffraction

$$q \cdot a_1 = 2\pi h$$

$$I \neq 0 \text{ if } q \cdot a_2 = 2\pi k$$

$$q \cdot a_3 = 2\pi l$$

Reciprocal lattice vectors $q = g_{hkl} = h b_1 + k b_2 + l b_3$ with $b_i \cdot a_j = 2 \pi \delta_{ij}$ $b_1 = 2 \pi \frac{a_2 \times a_3}{a_1 \cdot a_2 \times a_3}$

Diffraction and reciprocal lattice detector

Constructive interference of the x-ray wave with the atomic lattice of the crystal.

Ewald sphere construction

 $q = k' - k = h b_1 + k b_2 + l b_3$

Crystal truncation rods

Crystal truncation rods

Crystal truncation rods

Pt(110) under 0.5 bar CO at 625 K

Pt(110) under 0.5 bar O_2 at 625 K

T = 625 K

T = 625 K

42

High-P (1x2) is not MR-reconstruction!

Commensurate oxide on Pt(110)

commensurate overlayer

DFT by B. Hammer

Similar to STM: During CO oxidation under O₂ rich conditions

platinum oxide is the active phase

 2.6 monolayer of incommensurate PtO₂ like oxide in pure oxygen

 1 monolayer of commensurate CO-stabilized (1x2) oxide during reaction

SXRD: M.D. Ackermann et al, PRL 95 (2005) 255505

high pressure STM & SXRD

single gas: adsorbate structures & surface restructuring

during CO oxidation: oxides more active

reaction mechanisms 8...

$\mathsf{P}_{\mathsf{CO2}}$ CONCERNING OF P_{co}

The "Reactor-STM": A Scanning Tunneling Microscope for Investigation of Catalytic Surfaces at Semiindustrial Reaction Conditions, P.B. Rasmussen, B.L.M. Hendriksen, H. Zeijlemaker, H.G. Ficke, and J.W.M. Frenken, Rev. Sci. Instrum. **69**, 3879 (1998)

Pushing the limits of SPM, Joost W.M. Frenken, Tjerk H. Oosterkamp, Bas L.M. Hendriksen, Marcel J. Rost, Materials Today 8, 5 (2005) 20

Looking at heterogeneous catalysis at atmospheric pressure using tunnel vision, Bas L. M. Hendriksen, Stefania C. Bobaru, and Joost W. M. Frenken, Topics in Catalysis 36 (2005) 43 (invited)

CO oxidation on Pt(110): scanning tunneling microscopy inside a flow reactor, B.L.M. Hendriksen and J.W.M. Frenken, Phys. Rev. Lett, **89**, 046101 (2002)

Oscillatory CO Oxidation on Pd(100) Studied with In-situ Scanning Tunneling Microscopy, B.L.M. Hendriksen, S.C. Bobaru, and J.W.M. Frenken, Surf. Sci. 552 (2004) 229

Bistability and oscillations in CO oxidation studied with Scanning Tunnelling Microscopy inside a reactor, B.L.M. Hendriksen, S.C. Bobaru, J.W.M. Frenken, Catalysis Today 105 (2005) 234 (invited)

Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation, M.D.Ackermann, T.M. Pedersen, B.L.M. Hendriksen, O. Robach, S. Bobaru, I. Popa, H. Kim, B. Hammer, S. Ferrer, J.W.M. Frenken, Phys. Rev. Lett. 95 (2005) 255505

www.physics.leidenuniv.nl/sections/cm/ip

blmhendriksen@lbl.gov

