Atomic Scale Coupling of Electromagnetic Radiation to Single Molecules

Wilson Ho University of California, Irvine

Surface Photochemistry

Mechanisms of Photo-Induced Reactions $Mo(CO)_6$ on $Si(111)7 \times 7$

1) Desorption via Substrate Heating

Direct Adsorbate Excitation

Photoelectron Mechanism

Objective

How to achieve atomic scale resolution in probing matter with electromagnetic radiation?

- Spectroscopy
- Optical Phenomena

Resolution of Optical Spectroscopy

Tip-Induced Plasmon Modes

Plasmon "size" : \sqrt{dR}

Combination of Electromagnetic Radiation With Spatial Resolution of the STM

Molecules in Double Barrier Junctions

• The oxide film spacer increases the lifetime of the transient charged molecular state created after electron injection/withdrawal.

Single Molecule Electroluminescence

Photon Emission from Single Molecules: Zn-Etioporphyrin on Partially Oxidized NiAl(110)

Zn(II) Etioporphyrin on Al₂O₃ & NiAl(110)

Mechanism of STM-induced Electroluminescence :

Mechanism of STM-induced Electroluminescence :

Mechanism of STM-induced Electroluminescence :

Light collection setup (electroluminescence)

Photon Emission From Molecules on Oxide Films

TIF – Ag vs. W Tips

Tunneling Electron Induced Single Molecule Fluorescence: Zn-Etioporphyrin

Spatial Dependence of Single Molecule Fluorescence

Tunneling Electron Induced Single Molecule Fluorescence

LUMO & LUMO + 1: MgP

TIF Mechanism

RF Induced Rectification Current

STM Apparatus

Origin of Rectification Current

 $V = V_B + \sqrt{2}V_J \cos(\omega t)$

$$I(V) = I_0(V_B) + \frac{dI}{dV}\Big|_{V_B} \sqrt{2}V_J \cos(\omega t) + \frac{d^2I}{dV^2}\Big|_{V_B} V_J^2 \cos^2(\omega t) + \cdots$$

$$I(V) = I_0(V_B) + \frac{dI}{dV}\Big|_{V_B} \sqrt{2}V_J \cos(\omega t) + \frac{d^2I}{dV^2}\Big|_{V_B} V_J^2 \frac{1 + \cos(2\omega t)}{2} + \dots$$

$$I_{dc}(V_B, V_J) = I_0(V_B) + I_R(V_B, V_J) = I_0(V_B) + \frac{1}{2}V_J^2 \frac{d^2I}{dV^2}\Big|_{V_B} + \cdots$$

$$I_R(V_B, V_J) \approx \frac{1}{2} V_J^2 \frac{d^2 I}{dV^2} \bigg|_{V_B}$$

Spatial Localization of RF Field

Double Modulation Vibrational Rectification

Vibrational Rectification Current: C₂D₂ and C₂H₂ on Cu(001)

Vibrational Rectification Microscopy: C₂D₂ and C₂H₂ on Cu(001)

Rectification of Single Mn Atom

Photon Induced Tunneling

Tip Vacuum Molecule Oxide NiAl

Single Molecule Electron Transfer

Mechanism of Photon-Induced Electron Transfer to a Single Molecule

Photon-Induced Electron Transfer Threshold

Photon Induced Tunneling

Tip Vacuum Molecule Oxide NiAl

Spatial Variations of Electron Transfer within a Single Molecule

Ultrafast Optical Spectroscopy with Spatial Resolution of the STM

- Femtosecond Lasers: Chemistry at the Temporal Limit
- Scanning Tunneling Microscopes: Chemistry at the Spatial Limit

Acknowledgment

Past

Present

Xi Chen Jennifer Gaudioso Jae Ryang Hahn Martin Janson Lincoln Lauhon Hyojune Lee Joonhee Lee Ning Liu Niklas Nilius Naoki Ogawa Nilay Pradhan Xiaohui Qiu Mohammad Rezaei Christophe Silien **Barry Stipe** Mitch Wallis

Chi Chen Ungdon Ham Kiyeo Kim Markus Lackinger Gary Mikaelian George Nazin Freddy Toledo Xiuwen Tu Shiwei Wu

Nicolas Lorente

Shiwu Gao Mats Persson

Prospects

Instrumentation Development

• Electron Spin

- microwave-RF excitation
- T ≈ sub-K, B ≈ 10 Tesla Zeeman

spectroscopy

- spin interactions: Kondo, nanomagnetism

• Laser-STM

- simultaneous spatial + temporal limits $1 \text{ \AA} 10 \text{ fs}$
- sub-molecular photochemistry, non-linear optics
- Non-Vacuum Environment
 - biological systems

< 1 K, 9 Tesla UHV STM

Mn Chains: 1 to 16 Atoms

Spin-Dependent Tunneling

400 nm x 400 nm

Acknowledgment

<u>Past</u>

<u>Present</u>

Jennifer Gaudioso Jae Ryang Hahn Lincoln Lauhon Hyojune Lee Joonhee Lee Ning Liu Niklas Nilius Nilay Pradhan Xiaohui Qiu Mohammad Rezaei Christophe Silien **Barry Stipe** Mitch Wallis

Chi Chen Xi Chen Ungdon Ham Martin Janson John Karnes Kiyeo Kim Markus Lackinger Gary Mikaelian George Nazin Naoki Ogawa Xiuwen Tu Shiwei Wu

Nicolas Lorente

Shiwu Gao Mats Persson

Atomic Scale Photochemistry

Wilson Ho University of California, Irvine

Photon Emission from molecules on metal surfaces

Tunneling Electron Induced Single Molecule Fluorescence

IET vs. Single Molecule Fluorescence:

Inelastic Electron Tunneling Fluorescence

Inelastic Electron Tunneling Spectroscopy (STM-IETS)

RF Voltage Across STM Junction: V_J

Monitoring Photon-Induced Electron Transfer in a Single Molecule

Single Molecule Photon Induced Electron Transfer with Sub-Molecular Spatial Resolution

Mg-Porphine Orbitals

Single Molecule Vibronic States: MgP

Neutral and Charged States: MgP

Experimental Setup

Plasmon modes in the STM junction

Double Modulation Spectroscopy Modulate RF Signal at ω_c

$$f(t) = \frac{4}{\pi} \sum_{n=1,3,5...}^{\infty} \frac{1}{n} \sin(n\omega_C t) \quad (\text{Square Wave } -1 \text{ to } +1 \text{ at } \omega_C)$$

$$f(t) = \frac{2}{\pi} \sum_{n=1,3,5\dots}^{\infty} \frac{1}{n} \sin(n\omega_C t) + \frac{1}{2} \quad (\text{Square Wave 0 to } +1 \text{ at } \omega_C)$$

$$I(t) = I_0(V_B) + I_R \cdot \left(\frac{2}{\pi} \sum_{n=1,3,5\cdots}^{\infty} \frac{1}{n} \sin(n\omega_C t) + \frac{1}{2}\right) \quad \text{(Modulated Current)}$$

$$I_1(t) = I_R \cdot \left(\frac{2}{\pi} \sin(\omega_C t)\right)$$
 (First Harmonic Signal)

 $X_1(RMS) = I_R \times \frac{2}{\pi} \times \frac{1}{\sqrt{2}}$ (First Harmonic rms Amplitude)

$$I_R = \frac{\pi}{\sqrt{2}} \times X_1$$
 (Absolute Rectification Current)

Lock-in Sensitivity: 1 nA/1 V $I_R \sim 1 \text{ pA}$ $I_{\theta}(V_B) \sim 1 \text{ nA}$

Vibrational Rectification: Single ¹²C¹⁶O & ¹³C¹⁸O

Single Molecule Photon Induced Electron Transfer

Single Molecule Photon Induced Electron Transfer with Sub-Molecular Spatial Resolution

Monitoring Photon-Induced Electron Transfer in a Single Molecule

Single Molecule Electron Transfer

