Direct Catalytic Conversion of Methane

Xiulian Pan, Zengjian An, Ding Ma, Yide Xu, Xinhe Bao

State Key Laboratory of Catlaysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences

www.fruit.dicp.ac.cn

Methane is a highly symmetrical molecule and is very difficult to activate

C-H bond strength:	438.8kJ•mol ⁻¹
Ionization potential:	12.5eV
Proton affinity:	4.4eV
Acidity (pKa):	48

Methane

- C₂₊ Hydrocarbons

- By OCM
- By high temperature coupling of methane
- By two step methane homologation

- Syngas (CO + H₂)

- By steam reforming of methane
- By partial oxidation of methane
- By oxy-steam and/or CO₂ reforming of methane

- Syngas ---> Methanol ----> Hydrocarbons

Hydrocarbons or Oxygenates (by FT-synthesis)

Hydrocarbons

- Methanol/formaldehyde, carbon disulfide, methyl chloride, etc.

Carbon and Hydrogen

Catal. Rev.-Sci. Eng., 2003,45, 151

Example 2

 $6\mathrm{CH}_4 \rightarrow \mathrm{C}_6\mathrm{H}_6 + 9\mathrm{H}_2$

Example 1

Low Temperature Catalytic Oxidation of Methane

Examples...

Electrophiles and superacids,

$$\begin{split} \mathbf{CH}_4 + \mathbf{HF} + \mathbf{SbF}_5 &\rightarrow \mathbf{[CH_5]}\mathbf{[SbF_6]} \\ \mathbf{[CH_5]}\mathbf{[SbF_6]} \xrightarrow{-\mathbf{H}_2} \mathbf{[CH_3]}\mathbf{[SbF_6]} \xrightarrow{\mathbf{CH}_4} \\ \mathbf{[C_2H_7]}\mathbf{[SbF_6]} \\ \mathbf{H}_2 + \mathbf{SbF}_5 &\rightarrow \mathbf{2HF} + \mathbf{SbF}_3 \end{split}$$

G. Olah, ACC. Chem. Res. 1987, 20, 422.

CH₄ + H₂SO₄ + SO₃
$$\xrightarrow{\text{HgSO4}}$$
 CH₃OSO₃H + H₂O + SO₂
CH₃OSO₃H + H₂O \longrightarrow CH₃OH + H₂SO₄
SO₂ + 1/2O₂ \longrightarrow SO₃
Net reaction: CH₄ + 1/2O₂ $\xrightarrow{\text{HgSO4}}$ CH₃OH

CH₄ conversion 50%, yield 43%

Periana et al. Science, 1993, 340

Work of Periana et al.

A more effective catalyst----Pt-complex was developed, methane conversion was 72%.

Conv. 90%, Sel. 81% 220 °C, 35 bar CH4

Methyl bisulfate on the Pt-complex catalyst in fuming sulfuric acid.

Periana et al. 1998, Science, 280, 560.

Work of Fujiwara et al.

Catal.	Solvent	Oxidant	Reagent	T (°C)	TON (h ⁻¹)
CaCl ₂	$CF_{3}CO_{2}H$ /(CF_{3}CO_{2}) ₂ O	K ₂ S ₂ O ₈	CO	85	0.2
Angew. Chem. In Pd (OAc) ₂ /Cu(OAc) ₂	^{t.} Carboxy	lation to acid	o acetic	80	< 1
J. Organometal. Mg Appl. Organomet	Chem. 1994, 473: 329 CF ₃ CO ₂ H al. Chem. 1999, 13: 53	K ₂ S ₂ O ₈	СО	80	< 0.1

69 atm CH4 (268 mmol); 2.4 atm SO2 (13.14 mmol); 5 mmol K2S2O8; 5 mL triflic acid; 10 h.

J. AM. CHEM. SOC. 2003, 125, 4406-4407

$$CF_{3}COOH + CH_{4} + Pd^{2+} \cdot 80 \circ C \cdot CF_{3}COOCH_{3} + Pd^{0} + 2H^{+}$$

$$CF_{3}COOH + CH_{3}OH$$

 $H_2O_2 + CH_4 \xrightarrow{(CF_3CO)_2O} CF_3COOCH_3$

≻adamantane

≻ethane

arene

methane

E. Gretz, et al. J. Am. Chem. Soc. 109 (1987) 8109; L. Kao, et al. J Am Chem Soc 113 (1991) 700

We want...

To make a catalytic process ; To avoid HCl, H₂SO₄, SO₃, SO₂, H₂O₂; To use O₂ as oxidant.

Redox couples forming electron transfer chain in biological oxidation processes

High efficiency

 O_2 as oxidant

Redox couples forming electron transfer chain in nature

 $Pd^0 \rightarrow Pd^{2+}$?

➢ Wacker process: CuCl₂/CuCl/O₂

The Wacker Process

Developed simultaneously by Wacker-Chemie and by the group of Moiseev.

It involves the reaction of ethylene with $PdCl_2$ in HCI (reaction 1). Pd(II) is reduced to Pd black. To make the reaction catalytic, Pd(0) is reoxidized by $CuCl_2$ and O_2 (reactions 2 and 3).

$$C_2H_4 + Pd C_4^2 + 3H_2O \longrightarrow C H_3CHO + Pd^0 + 2H_3O + 4Cl^- (1)$$

- $Pd^{0} + 2CuCl_{2} + 2Cl^{-} \rightarrow Pd Cl_{4}^{2} + 2CuCl \quad (2)$
- $C u Cl_{+} 4H_{3}O^{+} + 4Cl_{+}O_{2} \rightarrow 4CuCl_{2} + 6H_{2}O$ (3)

Quinone / Hydroquinone

Backvall et al. J. Am. Chem. Soc. 1990, 112, 5160

Search for active oxidants for regeneration of $Pd^0 \rightarrow Pd^{2+}$

Run	oxidant	CF ₃ COOCH ₃	TONa
		(µmol)	
1 ^b		0.07	0.7
2	Cu(oAc) ₂	0.04	0.8
3	FeCl ₃	0.03	0.6
4	$K_2S_2O_8$	0.06	1.2
5	Q	0.12	2.4
6	LiNO ₃	0.07	1.4
7	$H_2O_2^{c}$	0.09	1.8

Conditions:

50 μmol Pd(oAc)₂, 500 μmol oxidant, 3 ml (39 mmol) CF₃COOH, 80 °C, 10 h, CH₄: 55 atm.
a: molar ratio of CF₃COOCH₃/ Pd(oAc)₂.
b: Pd(oAc)₂: 100 μmol.
c: 880 μmol.

Combination of Pd²⁺ and Q

Run	Pd ²⁺	Q	O ₂	CF ₃ COOCH ₃	Pd ^{2+a}	
	(μmol)	(μmol)	(atm)	(μmol)	(%)	
1	10	0	0	9.5		
2	10	20	0	30		
3	10	50	0	55		
4	10	100	0	60	92	
5	10	20	1	34	15	
6	10	50	1	67	27	

Conditions: CF₃COOH: 3 ml (39 mmol), CH₄: 54 atm (114 mmol),

 O_2 : 1 atm (2 mmol), 80 °C, 10 h; a: Remaining Pd²⁺ after the reaction.

Determination of remaining Pd²⁺ in the solution by Gravimetric method

Evaporation of solvent

Addition of water

 $H_2Q + Pd^0 + Pd(CFCOOH)_2$

Addition of dimethylglyoxime/ethanol solution

 $\mathbf{H}_{2}\mathbf{Q} + \mathbf{Pd}^{0} + \mathbf{Pd(dmg)}_{2}$

washed with anhydrous alcohol

Addition of HNO₃ acid

 $\begin{array}{l} H_2 Q \rightarrow Q \ (water \ soluble) \\ \mathsf{Pd}^0 \rightarrow \mathsf{Pd}^{2+} \end{array}$

Centrifugal separation

Pd(dmg)₂

Weight

Scheme of methane oxidation

Search for active oxidants to speed up:

Combination of Pd²⁺ and Q for aerobic oxidation of CH₄

Run	Pd ²⁺	Q	NaNO ₂	O ₂	CF ₃ COOCH ₃	Pd ^{2+a}
	(μmol)	(μmol)	(μmol)	(atm)	(μmol)	(%)
1	10	0	0	0	9.5	
2	10	20	0	0	30	
3	10	50	0	0	55	
4	10	100	0	0	60	92
5	10	20	0	1	34	15
6	10	50	0	1	67	27
7	10	20	20	1	69	98
8	5	20	20	1	32	95
9	20	20	20	1	106	54
10	10	50	100	1	70	95
11	10	100	100	1	67	98

CF₃COOH: 3 ml (39 mmol), CH₄: 54 atm (114 mmol), O₂: 1 atm (2 mmol), 80 °C, 10 h; a: Remaining Pd²⁺ after the reaction.

Pd key, determining the TON

The yield to CF_3COOCH_3 versus the reaction time.

Additional experiments for further confirmation

Run	Pd ²⁺	Q	NaNO ₂	O ₂	CF ₃ COOCH ₃	Pd ^{2+a}
	(μmol)	(μmol)	(μmol)	(atm)	(μmol)	(%)
1	0	20	0	1	0	
2	0	0	20	0	0	
3	0	0	20	1	0	

Conditions: CF3COOH: 3 ml (39 mmol), CH4: 54 atm (114 mmol), O2: 1 atm (2 mmol), 80 °C, 10 h; a: Remaining Pd²⁺ after the reaction. Additional experiments for further confirmation *isotope experiments*

GC-MS

Features

High Temperature Conversion of Methane to Aromatics

Typical HT Direct Conversion Process

• Selective Oxidation $CH_4 + O_2 \rightarrow CH_3OH + CO_2 + H_2O$

• Oxidative Coupling $CH_4 + O_2 \rightarrow C_2H_x + CO_2 + H_2O$

A New Route...

To higher hydrocarbons, without forming CO₂?

Y. Xu, et al., Catal. Lett. 21 (1993) 35-41

Conversion of methane to aromatics

Catalysts Mo, W, Re... HZSM-5, MCM-22...

Bifunctionality of Mo/HZSM-5

Acidity and catalytically active sites

Loadings of Mo in Mo/HZSM-5

D. Ma, X. Bao et al., Angew. Chem-Inter Edit. 39 (2000); Chem. Eur. J., 8 (2002).

Aromatization over different Mo species

D. Ma, X. Bao et al., Chem. Eur. J. 8 (2002), Y. Xu, X. Bao, et al., J. Catal. 216 (2003)

Bifunctionality of Mo/HZSM-5

Acidic sites

MoC_xO_y active species

Pore Morphology of Catalyst Carriers

Pore morphology of zeolite supports

Applied Catalysis A-general 188 (1-2), J. Catal. 216 (2003)

Morphology of Zeolites

Morphology of zeolites

Mo/MCM-22

Comparison between Mo/ZSM-5 and Mo/MCM-22

Y. Shu, X. Bao et al., Catal. Lett. 70 (2000) 67.

Modification of HZSM-5 with alkali treatment

Modification of zeolite carrier

Catal. Lett. 91 (2003) 155-167

Pore morphology of carriers Shape selectivity

> size (dynamic diameter of benzene (0.59 nm)

crossing with two-dimensional structure

micro-mesoporous composite

A Coupled Process

Aromatization + Oxidative Coupling

Aromatization :

Effect of co-feeding CO, CO₂, H₂, CO/H₂, H₂O

Why to couple?

 $OCM : CH_4 + O_2 \rightarrow$

Aromatization :

Aromatization of methane by coupling oxidative coupling

Aromatization + Oxidative Coupling

J. Catal. 216 (2003), Catal. Lett. 89 (2003) 275-279.

Achievements over the years

700°C, 1atm with a flow rate of 1500mL/gcat. h

Thank you