Introduction to X-ray Photoelectron Spectroscopy (XPS)

- X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate the chemical composition of surfaces.
- XPS which makes use of the photoelectric effect, was developed in the mid-1960's by Kai Siegbahn and his research group at the University of Uppsala, Sweden.

Photoemission of Electrons

Ejected Photoelectron

Free Electron Level (vacuum)

Fermi Level

- XPS spectral lines are identified by the shell from which the electron was ejected (1s, 2s, 2p, etc.).
- The ejected photoelectron has kinetic \geq energy:

 $KE = hv - BE - \phi$

Following this process, the atom will release energy by the emission of a photon or Auger Electron.

- L electron falls to fill core level vacancy (step 1).
- KLL Auger electron emitted to conserve energy released in step 1.
- The kinetic energy of the emitted Auger electron is:

 $\mathsf{KE}=\mathsf{E}(\mathsf{K})-\mathsf{E}(\mathsf{L2})-\mathsf{E}(\mathsf{L3}).$

XPS Energy Scale - Binding energy

$$\mathsf{BE} = \mathsf{hv} - \mathsf{KE} - \Phi_{\mathsf{spec}}$$

Where:BE= Electron Binding EnergyKE= Electron Kinetic Energy Φ_{spec} = Spectrometer Work Function

Photoelectron line energies: **Not Dependent** on photon energy. Auger electron line energies: **Dependent** on photon energy.

XPS spectrum of Vanadium

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Vanadium, V Atomic 23

Note the stepped background

- Only electrons close to surface can escape elastically (λ 63%, 3 λ 95%))
- Electrons from deeper in sample undergo inelastic collisions while traveling to the surface giving rise to the stepped background
- Empirical models can be used to subtract the backgorund

X-ray Photoelectron Spectrometer

Figure 6. Mg x-ray satellites (C1s graphite spectrum).

~

Note that most XPS peaks appear as doublets

A little quantum mechanics is needed to understand why this is the case

Electron quantum numbers

orbital momentum: l = 0,1,2,3 (s, p, d, and f orbitals)

spin momentum: $s = +\frac{1}{2}, -\frac{1}{2}$

total momentum: j = l + s

Since *s* can be $+\frac{1}{2}$ or $-\frac{1}{2}$, each level with *l* >0 is split into two sublevels with an energy difference known as the spin-orbit splitting. The degeneracy of each of these levels is 2j+1

(Orbital		j	degeneracy	Electron level
	1s	0	1/2	1	1s
	2s	0	1/2	1	2s
	2р	1	1/2	2	2p _{1/2}
	2р	1	3/2	4	2p _{3/2}
	3d	2	3/2	4	3d _{3/2}
	3d	2	5/2	6	3d _{5/2}
	4f	3	5/2	6	4f _{5/2}
	4f	3	7/2	8	4f _{7/2}

What information can you obtain from XPS?

- Identification of elements near the surface and surface composition
- Local chemical environments
- Oxidation states of transition metals
- Valence band electronic structure
- Morphology of thin films

Sampling Depth

- Electron mean free path is energy dependent
- Sampling depth is materials dependent
- XPS is surface sensitive but samples more than just the surface

Elemental Shifts

	Binding Energy (eV)			
Element	2p _{3/2}	3р	Δ	
Fe	707	53	654	
Со	778	60	718	
Ni	853	67	786	
Cu	933	75	858	
Zn	1022	89	933	

Electron Binding Energies

Chemical Shifts

- In addition to the identity of the element and the orbital (s,p, d, f) electron binding energies depend on:
 - (1) the formal oxidation state of the atom
 - (2) the local chemical environment
- Both (1) or (2) cause small binding energy shifts (< 5 eV)</p>
- An increase in oxidation state causes the binding energy to increase due to a decrease in the screening of the bound electron from the ion core. The ability of XPS to determine oxidation states is used extensively in catalysis research.

Oxidation States

$0.5 \text{ ML VO}_{x} - \text{XPS}$

Chemical Shifts - Electronegativity Effects

Local chemical environment can also cause small shifts in XPS peak positions

Functional Group		C(1s)Binding Energy (eV)
hydrocarbon	C-H, C-C	285.0
amine	C-N	286.0
alcohol, ether	С-О-Н, С-О-С	286.5
CI bound to C	C-CI	286.5
F bound to C	C-F	287.8
carbonyl	C=O	288.0

Electronegative substituents decrease the electron density on the carbon atom causing a small in crease in the C(1s) binding energy

Quantitative elemental analysis

Chemical state analysis

Final State Effects - Shake-up features

Shake-up features occur when additional electron energy level transitions occur during the photoelectron emission process

Primary photoemission

00	v, a		
Ce ⁴⁺	v",u"	3d ¹⁰ 4f ⁰	3d ⁹ 4f ¹ V ⁿ⁻¹
Ce ⁴⁺	v''',u'''	3d ¹⁰ 4f ⁰	3d ⁹ 4f ⁰ V ⁿ

Quantitative Analysis of XPS DATA

Element sensitivity factors

Sensitivity factor = S = f σ D λ

f = x-ray flux

- s = photoelectron cross-section
- D = detector efficiency
- λ =electron mean free path

For a homogenous sample:

$$\frac{n_1}{n_2} = \frac{I_1/S_1}{I_2/S_2}$$

n_i = number of I atoms I_i = area of I photoemission peak S = sensitivity factor for i

$$C_{x} = \frac{n_{x}}{\sum_{i} n_{i}} = \frac{I_{x}/S_{x}}{\sum_{i} I_{i}/S_{i}}$$

 C_x = concentration of element x

Relative Sensitivities of the Elements

 $S(F_{1s}) = 1.0$

Thin Film Morphology

Vanadium Deposition on CeO₂(111)

XPS depth profile of SiO₂ layer on silicon wafer

Si(2p) - 99.3 eV

Si⁴⁺(2p) - 103.3 eV

Scanning XPS

- Provides elemental and chemical state maps of surfaces

Raster the x-ray beam.

Requires the electron beam in the x-ray source to be rastered and a complex quartz crystal lens to focus the x-rays .

XPS image of a patterned polymer film

XPS of Supported Catalysts

Issues:

- Sample is not homogenous
- Only analyze external surface
- Sample charging
- Beam damage

Figure 3.7: Comparison of the monochromatic Mo 3d XPS spectra of MoO_3 in an insulating silica-supported catalyst and in a conducting, thin silica film-supported model catalyst, showing the effect of inhomogeneous charge broadening (courtesy of H. Korpik, Eindhoven).

Valence Band Photoelectron Spectroscopy

- Density of states near the Fermi level.
- Electronic states in the band gap
- Binding energies of valance electrons of adsorbates

Need very high energy resolution to obtain useful information. He discharge lamp or synchrotron is typically used as the photon source

If ultraviolet photons (rather than x-rays) are used the technique is called Ultraviolet Photoelectron Spectroscopy (UPS). Other than the photon source instrumentation is identical to that of XPS

Figure 3.17: Schematic UPS spectrum of a d-metal and the corresponding density of states.

UPS Spectra of Ag/Ru(001) and AuRu(001)

Figure 3.18: UPS spectra of silver and gold layers on a ruthenium (001) substrate show the evolution of the d-band as a function of the silver dimensions. Note also the changes in work function reflected in the width of the spectra of Ag (courtesy of K. Wandelt, Bonn [47]).

UPS Spectra of Adsorbates

Figure 3.20: UPS spectra of CO chemisorbed on iron show that the 5σ orbital has shifted down to higher binding energy as a result of chemisorption. CO largely desorbs from clean iron upon heating to 390 K. Potassium enhances the bond between CO and the metal and promotes the dissociation of CO at higher temperatures (adapted from Brodén *et al.* [51]).