Examples of the use of XPS in Catalysis Research from the Vohs Group

- Supported monolayer vanadia catalysts
- Ceria/zirconia automotive emissions control catalysts
- Reaction of oxygenates on ZnO
- Pd/ZnO methanol steam reforming catalysts

Introduction

> Supported monolayer vanadia catalysts are active for:

 $CH_3OH + O_2 \rightarrow CH_2O + H_2O$

- Reactivity depends on:
 - Identity of the support
 - $(TiO_2, Al_2O_3, ZrO_2, MgO, CeO_2, etc.)$
 - Vanadia coverage

Structure-activity relationships not well understood

Methanol oxidation activity for vanadia on various oxide supports

Catalyst (monolayer vanadia coverage)	TOF for CH ₃ OH Oxidation to H ₂ CO (s ⁻¹)	Apparent E _a (kJ/mol)
$25 \% V_2 O_5 / Al_2 O_3$	0.068	83.7
7 % V ₂ O ₅ /Nb ₂ O ₅	0.4	71.1
6 % V ₂ O ₅ /TiO ₂	1.1	92.0
4 % V ₂ O ₅ /ZrO ₂	1.7	75.3
3 % V ₂ O ₅ /CeO ₂	10.0	83.7

From: Wachs et al., in *Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis* Elsevier Science B.V., Amsterdam, 1997.

$CH_3OH + O_2 \rightarrow CH_2O + H_2O$ - Mechanism

Hydride Transfer Proton/hydrogen Transfe		Proton/hydrogen Transfer
$CH_3OH + V * + O * \leftrightarrow V * - OCH_3 + O * - H$	(1)	$CH_3OH + V* + O* \leftrightarrow V*-OCH_3 + O*-H$
$V*-OCH_3 \rightarrow CH_2O + V*-H$	(2 -rds)	$O* + V*-OCH_3 \rightarrow CH_2O + V* + O*-H$
$V*-H + O*-H \leftrightarrow V* + H_2O + \Box$	(3)	$2 O * H \leftrightarrow O * + H_2O + \Box$
$O_2 + 2 \Box \leftrightarrow 2 O *$	(4)	$O_2 + 2 \Box \leftrightarrow 2 O \star$
D D 1/4		

$$\mathbf{TOF} = k_{app} \times \frac{P_{CH_3OH} P_{O_2}^{1/4}}{P_{H_2}^{1/2}} \qquad \qquad k_{app} = (K_1 K_3^{1/2} K_4^{1/4}) \times k_{rds}$$

 $E_{app} \sim E_{rds} + \Delta H_1 + \frac{1}{2}\Delta H_3 + \frac{1}{4}\Delta H_4$

Model Systems:

Sub-monolayer, monolayer, and multilayer vanadia films on single crystal metal oxide supports: $TiO_2(110)$, CeO_2 (111), ZrO_2 (100), MgO(100)

- Temperature Programmed Desorption
- Auger Electron Spectroscopy
- X-ray Photoelectron Spectroscopy
- Low Energy Electron Diffraction

HREELS High Resolution Electron Energy Loss Spectroscopy

Vanadium Deposition on CeO₂(111)

Namai et al. Catalysis Today 85 (2003) 79.

Metal Oxide	ΔG_{f}^{o} kcal/mole of metal cation
V_2O_3	-136.2
V_2O_5	-169.7
CeO ₂	-244.9
Ce ₂ O ₃	-203.9
TiO ₂	-212.6
Ti ₂ O ₃	-171.4

$\Delta G^{o} \underline{\text{kcal/mole}}$

 $\begin{array}{rcl} 6 \, {\rm CeO}_2 + 2 \, {\rm V} & \rightarrow & {\rm V}_2 {\rm O}_3 + 3 \, {\rm Ce}_2 {\rm O}_3 & -26.3 \\ 10 \, {\rm CeO}_2 + 2 \, {\rm V} & \rightarrow & {\rm V}_2 {\rm O}_5 + 5 \, {\rm Ce}_2 {\rm O}_3 & 70.7 \\ 6 \, {\rm TiO}_2 + 2 \, {\rm V} & \rightarrow & {\rm V}_2 {\rm O}_3 + 3 \, {\rm Ti}_2 {\rm O}_3 & -25.1 \\ 10 \, {\rm TiO}_2 + 2 \, {\rm V} & \rightarrow & {\rm V}_2 {\rm O}_5 + 5 \, {\rm Ti}_2 {\rm O}_3 & 72.7 \\ {\rm V}_2 {\rm O}_3 + 4 \, {\rm CeO}_2 & \rightarrow & {\rm V}_2 {\rm O}_5 + 2 \, {\rm Ce}_2 {\rm O}_3 & 97.0 \\ {\rm V}_2 {\rm O}_3 + 4 \, {\rm TiO}_2 & \rightarrow & {\rm V}_2 {\rm O}_5 + 2 \, {\rm Ti}_2 {\rm O}_3 & 97.8 \end{array}$

$0.5 \text{ ML VO}_{x} - \text{XPS}$

Ce³⁺

......

Ce⁴⁺

10⁻³ torr O₂, 400K

10⁻⁵ torr O₂, 400K

0.5 ML V as deposited

CeO₂(111)

	Peaks	Initial State	Final State
Ce ³⁺	v ^o ,u ^o	$3d^{10}4f^1$	3d ⁹ 4f ² V ⁿ⁻¹
Ce ³⁺	v',u'	$3d^{10}4f^1$	3d ⁹ 4f ⁰ V ⁿ
Ce ⁴⁺	v,u	3d ¹⁰ 4f ⁰	3d ⁹ 4f²V ⁿ⁻²
Ce ⁴⁺	v",u"	3d ¹⁰ 4f ⁰	3d ⁹ 4f¹V ⁿ⁻¹
Ce ⁴⁺	v"',u"	3d ¹⁰ 4f ⁰	3d ⁹ 4f⁰V ⁿ

Thermal Stability of V₂O₅/CeO₂(111)

Summary of Film Growth Characterization

- → "Layer-by-Layer" vanadia film growth on $CeO_2(111)$, $TiO_2(110)$, and $ZrO_2(110)$.
- The oxidation state of the vanadium cations in monolayer films can be varied from +3 to +5
- → Unable to grow multilayer films of V_2O_5 on CeO₂(111) and TiO₂(110) in UHV

Temperature Programmed Desorption (TPD)

- E_a and A for for desorption and surface reaction
- Surface-adsorbate bonding
- Structure of adsorbed intermediates
- Reaction pathways and mechanisms

Procedure

- Dose reactant at low temperature
- Heat sample with a linear temperature ramp
- Monitor desorbing species with mass spec

CH₃OH TPD 0.5 ML V₂O₅/CeO₂(111)

 $E_{a,1} \sim 140 \text{ kJ/mole}$ $E_{a,2} \sim 155 \text{ kJ/mole}$

 E_a for C-H bond cleavage from adsorbed methoxides is much greater than E_{app} for high surface area catalysts.

Kinetic Isotope Effect CH₃OH/CD₃OD TPD

0.5 ML VO_x/CeO₂(111) - CH₃OH TPD

Summary of Activation energies

 $V*-OCH_3 \rightarrow CH_2O + V*-H$

	Model Catalysts		
	V_2O_3	V_2O_5	
TiO ₂ (110)	~160 kJ/mole	120 kJ/mole	
ZrO ₂ (110)	158 kJ/mole	124 kJ/mole	
CeO ₂ (111)	155 kJ/mole	140 kJ/mole	

High surface area catalysts Catalysts

Catalyst (monolayer vanadia coverage)	TOF for CH ₃ OH Oxidation to H ₂ CO (s ⁻¹)	Apparent E _a (kJ/mol)
25 % V ₂ O ₅ /Al ₂ O ₃	0.068	83.7
7 % V ₂ O ₅ /Nb ₂ O ₅	0.4	71.1
6 % V ₂ O ₅ /TiO ₂	1.1	92.0
4 % V ₂ O ₅ /ZrO ₂	1.7	75.3
3 % V ₂ O ₅ /CeO ₂	10.0	83.7

V₂O₅/CeO₂ - Powder Samples - CH₃OH TPD

Fresh Sample – fully oxidized

Slightly reduced

Highly reduced

Reoxidation treatment

0.1 Torr O₂, 300 K

0.1 Torr O₂, 525 K

0.1 Torr O₂, 750 K

1.0 Torr O₂, 750 K

Reduced by annealing at 750 K in vacuum

High Surface Area V₂O₅/CeO₂ catalyst

Single Crystal Model Systems Summary

- Reactivity trends are consistent with those of high surface area analogues
 - Monolayer vanadia films are active for the oxidation of methanol to formaldehyde
 - Multilayer films are inactive
- Activation energy for the dehydrogenation of methoxide to produce formaldehyde is a function of the oxidation state of the vanadium cations
- Methanol can be used as a chemical probe of the vanadium oxidation state.

Three-Way Automotive Emissions Control Catalysts

Issues in Automotive Catalysis

- Tighter emissions standards require better catalysts
- Cold start emissions
 - Close-coupled converter
 - Thermal stability
- Sulfur tolerance
- Durability
- > NO_x reduction for lean burn engines

Role of Ceria and Zirconia in Automotive Emissions Control Catalysts

CeO₂

- Enhance activity for water gas shift reaction
- Stabilization of metal dispersion
- Stabilization of γ -Al₂O₃ support
- Enhance metal reactivity
- Provide oxygen storage capacity

ZrO₂

- Stabilization of CeO₂ dispersion
- Enhance CeO₂ oxygen storage capacity

Ceria – Zirconia Interfaces

Fundamental question: How do interactions at the ceria-zirconia interface influence the redox and catalytic properties of ceria?

Experimental Approach:

- Model systems consisting of metal oxide single crystals and thin films supported on metal oxide single crystals
- Kinetic measurements
- Surface-sensitive spectroscopic probes
- Microscopy

Model Systems Studied

 $CeO_2(100)$ CeO_2/ZrO_2 (100) CeO_2/ZrO_2 (111) $CeO_2(111)$ $CeO_2/ZrO_2 (110)$ $CeO_2/Al_2O_3(0001)$

Model Catalysts

Model Catalysts

CeO₂(111) - CH₃OH TPD

Vacuum Annealed

(nearly stoichiometric)

CeO₂/α-Al₂O₃(0001) CH₃OH TPD

Results similar to those obtained for $CeO_2(111)$

- Dissociative adsorption of CH₃OH on surface oxygen vacancies
- Concentration of oxygen vacancies increases with each TPD run
- Annealing temperature does not affect properties

CeO₂/YSZ(100) CH₃OH TPD

- High oxygen vacancy concentration in O₂ annealed epitaxial ceria film
- Heating to 900 K causes significant reduction of the ceria film?

X-ray Photoelectron Spectroscopy - XPS

Electron Binding Energy = $h\nu - E_{KE} - \Psi$

1s –

- Surface composition
- Morphology and thickness of thin films
- Oxidation states
- Adsorbate structure

XPS: Thermal Stability of Ceria Films

Ceria/Zirconia

Results from Pulsed Neutron Diffraction Studies

Mamontov, Egami et al., J. Phys. Chem. B 104 (2000) 11110.

- Ceria sample is nearly stoichiometric
- Ceria-zirconia sample is oxygen deficient
- CeO₂ oxygen vacancy-interstitial defect concentration decreases upon heating to 700°C

Enhanced Reducibility of CeO₂/ZrO₂

• Lattice mismatch at interface maintains small ceria grain size

$$a = 5.4 \text{ Å}$$

$$a = 5.1 \text{ Å}$$
Ceria grain size ~75 Å

• Bonding at interface prevents CeO₂ phase transformation

 ZrO_2 , CeO_2 – cubic fluorite Ce_2O_3 – trigonal Ce_2O_3/ZrO_2 , – cubic fluorite?

Interfacial strain alters vacancy and interstitial concentrations in CeO₂

Steam Reforming of Methanol

$CH_3OH + H_2O \rightarrow CO_2 + 3H_2$

Cu/ZnO is used commercially

 Has high activity and selectivity but
 Cu sinters at T>575 K
 Pyrophoric once reduced

 Pd/ZnO has been proposed as an alternative catalyst

 Has high activity and selectivity
 Structure-activity relationships are poorly understood

CH₃OH Oxidation on ZnO(0001) TPD – Pathways and Intermediates

CH₃OH Oxidation on ZnO(0001) TPD – Pathways and Intermediates

>150 K	$CH_3OH(g) \rightarrow CH_3O(ad) + H(ad)$
> 400 K	$CH_{3}O(ad) + O(I) \rightarrow HCOO(ad) + 2 H(ad)$
510-530 K	$CH_3O(ad) \rightarrow CH_2O(g) + H(ad)$
560-580 K	$HCOO(ad) \rightarrow CO_2(g) + H(ad)$
	HCOO(ad) \rightarrow CO (g) + OH(ad)
	$2 \text{ OH(ad)} \rightarrow \text{H}_2\text{O(g)} + \text{O(l)}$

CH₃OH Oxidation on ZnO(0001) TPD – Pathways and Intermediates

Methanol Steam Reforming

N. Iwasa et al. / Applied Catalysis A: General 125 (1995) 145-157

Methanol Dehydrogenation

N. Takezawa, N. Iwasa / Catalysis Today 36 (1997) 45-56

Table 4

Dehydrogenation of methanol over various supported Pd catalysts *

Catalyst ^b	Rate of H ₂ production	Selectivity (%)	
	$(\mu mol (min g-cat)^{-1})$	со	HCOOCH3
Pd	192	100	0
Pd/SiO ₂	17.6	100	0
Pd/MnO_2	74.5	100	0
Pd/MgO	101	100	0
Pd/Cr ₂ O ₃	83.8	100	0
Pd/TiO ₂	106	100	0
Pd/ZrO ₂	188	100	0
Pd/HfO ₂	59.3	100	0
Pd/La2O1	50	100	0
Pd/Nd ₂ O ₃	142	100	0
Pd/ZnO	110	20	80

^a Reaction temperature 473 K: $P(CH_3OH) = 10.1$ kPa.

^b Metal loading, 1.0 wt.%.

Steam Reforming of Methanol – Pd/ZnO

N. Iwasa et al. / Applied Catalysis A: General 248 (2003) 153-160

155

XPS

Pd Film Growth on ZnO(0001)

3

900

Growth of Pd Films on ZnO(0001) - Summary

ZnO(0001), Pd/ZnO(0001) CH₃OH TPD

0.75 ML Pd/ZnO(0001) CH₃OH TPD

Pd/ZnO – high surface area catalyst

N. Takezawa, N. Iwasa / Catalysis Today 36 (1997) 45-56

Pd/ZnO(0001) - model catalyst

XPS spectra of 10 wt.% Pd/ZnO(0001) as a function of annealing temperature in UHV

Mechanism of the reaction of CH₃OH on Pd

250-300 K $CH_3O(ad) \rightarrow CH_xO(ad) + H(ad)$ $CH_xO(ad) \rightarrow CO(ad) + H(ad)$ $H(ad) + H(ad) \rightarrow H_2(g)$ 450-500 K $CO(ad) \rightarrow CO(g)$

Proposed Mechanism for the production of CO_2 of CH_3OH on Pd/ZnO(0001)

300 K	$CH_3OH + Pd \rightarrow CO-Pd$	+ 2 H ₂ (g)
-------	---------------------------------	------------------------

400-550 K CO-Pd + ZnO \rightarrow CO₂(g) + PdZn

In Pd/ZnO methanol steam reforming catalysts Zn may act as a redox site that provides oxygen for reaction with CO adsorbed on the metal to produce CO_2 . These Zn sites could be located either at the Pd/ZnO interface or on the surface of the PdZn alloy.